SHARP S22MD1V/S22MD3

S22MD1V/S22MD3

Photothyristor Coupler

* Lead forming type (I type) and taping reel type (P type) of \$22MD1V are also available (\$22MD1VI/\$22MD1P)

** TÜV (DIN-VDE0884) approved type is also available as an option.

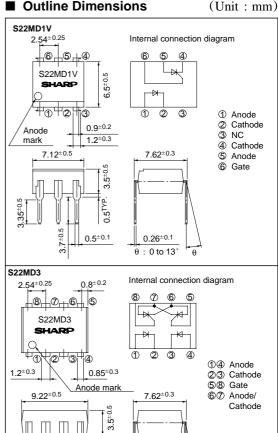
■ Features

1. High repetitive peak OFF-state voltage $(V_{DRM} : MIN. 600V)$

2. Low trigger current

(I_{FT}: MAX. 10mA at $R_G = 20k\Omega$)

3. High isolation voltage between input and output


S22MD1V ••• V_{iso} : 5 000 V_{rms} **S22MD3V** ••• V_{iso} : $2500V_{rms}$

- **S22MD1V** and **S22MD3** are for 200V line.
- 4. Recognized by UL, file NO. 64380

■ Applications

- 1. ON-OFF operation for a low power load
- 2. For triggering high power thyristor and triac

Outline Dimensions

0.5^{TYP.}

 $0.26^{\pm0.1}$ θ : 0 to 13°

0.5^{±0.1}

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Parameter		Symbol	Rating		Unit	
		Symbol	S22MD1V	S22MD3	Oint	
Input	Forward current	I_F	50		mA	
	Reverse voltage	V _R	6		V	
Output	RMS ON-state current	I_T	200		mA_{rms}	
	*1Peak one cycle surge current	I surge	2		A	
	*2Repetitive peak OFF-state voltage	V_{DRM}	600		V	
	*2Repetitive peak reverse voltage	V _{RRM}	600	-	V	
*3Isolation voltage		Viso	5 000	2 500	$V_{\rm rms}$	
Operating temperature		T opr	-30 to +100	-30 to +100	°C	
Storage temperature		T stg	-55 to +125	-40 to +125	°C	
*4Soldering temperature		T_{sol}	260		°C	

^{*1 50}H z, sine wave

■ Electro-optical Characteristics

(Ta= 25°C)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		$V_{\rm F}$	$I_F=30mA$	-	1.2	1.4	V
	Reverse current		I_R	$V_R = 3V$	-	-	10-5	A
Output	Repetitive peak OFF-state curren	t	I_{DRM}	$V_{DRM} = Rated, R_G = 20k\Omega$	-	-	10-6	A
	*5Repetitive peak reverse current		I_{RRM}	$V_{RRM} = Rated, R_G = 20k\Omega$	-	-	10-6	A
	ON-state voltage		V _T	$I_T = 200 mA$	-	1.0	1.4	V
	Holding current		I_{H}	$V_D = 6V$, $R_G = 20k\Omega$	-	0.2	1	mA
	Critical rate of	S22MD1V	dV/dt	$V_{DRM} = 1/\sqrt{2}$ Rated, $R_G = 20k\Omega$	5	-	-	V/µs
	rise of OFF-state voltage	S22MD3	a v/at		3	-	-	
Transfer	Minimum trigger current		I_{FT}	$V_D=6V,R_L=100\Omega$, $R_G=20k\Omega$	-	-	10	mA
charac-	Isolation resistance		R _{ISO}	DC500V, 40 to 60% RH	5 x 10 ¹⁰	1011	-	Ω
teristics	Turn-on time		t on	V_D = 6V, R $_G$ = 20k Ω , R $_L$ = 100 Ω , I $_F$ = 30mA	_	20	50	μs

^{*5} Applies only to S22MD1V

 $^{*2} R_G = 20k\Omega$

^{*3 40} to 60% RH, AC for 1 minute

^{*4} For 10 seconds

Fig. 1 RMS ON-state Current vs.
Ambient Temperature

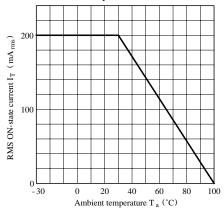


Fig. 3 Forward Current vs. Forward Voltage

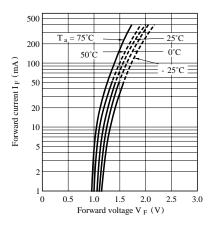


Fig. 5 Minimum Trigger Current vs.

Gate Resistance

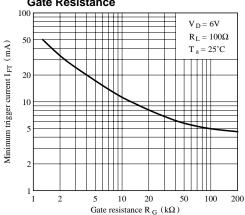


Fig. 2 Forward Current vs.
Ambient Temperature

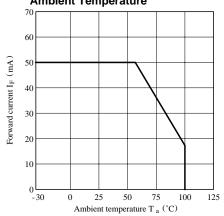


Fig. 4 Minimum Trigger Current vs.
Ambient Temperature

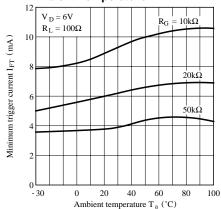


Fig. 6 Break Over Voltage vs.

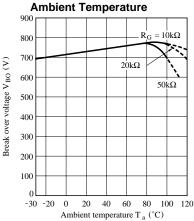
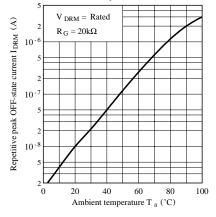
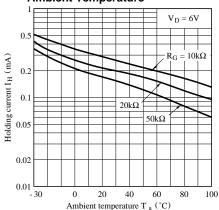
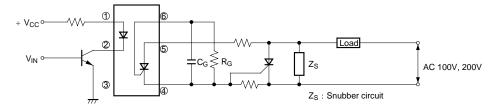


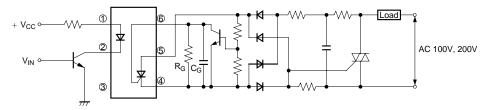
Fig. 7 Critical Rate of Rise of OFF-state Voltage vs. Ambient Temperature



Fig. 9 Repetitive Peak OFF-state Current vs. Ambient Temperature

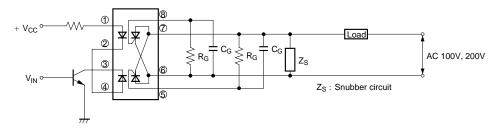




Fig. 8 Holding Current vs.
Ambient Temperature

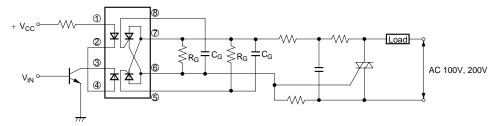

■ Basic Operation Circuit

● S22MD1V

Medium/High Power Thyristor Drive Circuit



Medium/High Power Triac Drive Circuit (Zero-cross Operation)



● S22MD3

Low Power Load Drive Circuit

Medium/High Power Triac Drive Circuit

• Please refer to the chapter "Precautions for Use" (Page 78 to 93).

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - Traffic signals
 - Gas leakage sensor breakers
 - Alarm equipment
 - Various safety devices, etc.
 - (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - Space applications
 - Telecommunication equipment [trunk lines]
 - Nuclear power control equipment
 - Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this
 publication.