! Safety Precautions

Panasonic
Brushless Motor
2015/04
Important Notes on exporting this product or equipment containing this product;
If the end-user or application of this product is related to military affairs or weapons, its export may be controlled by "Foreign Exchange and Foreign Trade Control Law" of Japan where export license will be required before product can be exported from Japan.

- This product is designed and manufactured for use in General Purpose Industrial Equipment and it is not intended to be used in equipment or system that may cause personal injury or death.
- All servicing such as installation, wiring, operation, maintenance and etc., should be performed by qualified personnel only.

Tighten mounting screws with an adequate torque by taking into consideration strength of the screws and the characteristics of material to which the product will be mounted. Over tightening can damage the screw and/or material; under tightening can result in loosening.

- Install safety equipment to prevent serious accidents or loss that is expected in case of failure of this product. - Consult us before using this product under such special conditions and environments as nuclear energy control, aerospace, transportation, medical equipment, various safety equipments or equipments which require a lesser air contamination. - We have been making the best effort to ensure the highest quality of our products, however, some applications with exceptionally large external noise disturbance and static electricity, or failure in input power, wiring and components may result in unexpected action. It is highly recommended that you make a fail-safe design and secure the safety in the operative range. - If the motor shaft is not electrically grounded, it may cause an electrolytic corrosion to the bearing, depending on the condition of the machine and its mounting environment, and may result in the bearing noise. Checking and verification by customer is required.
Failure of this product depending on its content may generate smoke of about one cigarette. Take this into consideration when the application of the machine is clean room related.
- Please be careful when using the product in an environment with high concentrations of sulfur or sulfuric gases, as sulfuration can lead to disconnection from the chip resistor or a poor contact connection.
- Do not input a supply voltage which significantly exceeds the rated range to the power supply of this product. Failure to heed this caution may lead to damage of the internal parts, causing smoke and/or fire and other troubles.
- The user is responsible for matching between machine and components in terms of configuration, dimensions, life expectancy, characteristics, when installing the machine or changing specification of the machine. The user is also responsible for complying with applicable laws and regulations.
- Manufacturer's warranty will be invalid if the product has been used outside its stated specifications.

Component parts are subject to minor change to improve performance.
Read and observe the instruction manual to ensure correct use of the product.

```
Repair Consult to the dealer from whom you have purchased this product for details of repair work.
When the product is incorporated to the machine you have purchased, consult to the machine manufacturer or its dealer.
Electronic data of this product (Instruction Manual, CAD data) can be downloaded from the following web site;
    industrial.panasonic.com/ac/e/
``` Industrial Device Business Division

\section*{Compact and high-efficiency brushless motors}

High-efficiency energy saving eco-friendly MINAS series* technology adopted more compact and higher-output brushless motors.

\section*{MINAS-BL}

Contents

\section*{Motor Business coexisting}

Panasonic Corporation, Automotive \& Industrial Systems Company, Smart Factory Solutions Business Division,Motor Business Unit promotes preservation of the environment together with industrial activities and aims to "Company Coexisting with Global Environment"

\section*{Environmental conservation activities in industrial field}

Environmental conservation activities have been required widely from home level to company level nowadays, and the role of conservation in the industrial sector has become more important. Total emissions of \(\mathrm{CO}_{2}\) in 2009 in Japan were approximately 1.1 billion tons, out of which 380 million tons belong to factory and industrial field.

It has become a huge amount which significantly exceeded transportation and business sectors.
\(\mathrm{CO}_{2}\) Emissions (2009)
Source:CO2 Inventory Office "Japan \(\mathrm{CO}_{2}\) emission data" (Units: million tons)

with Global Environment

\section*{Motor holds the key to global environmental protection}

From small one used in mobile phones, to big one used in factories, motor has become indispensable in every aspect of our society. It has been consuming more than half part of electricity in Japan which is equal to 573 billion kWh .

\section*{Brushless motors of MINAS-BL series}
realize "Three Savings".

Commutation brushless motor with advanced controlling technology features high efficiency and low power loss

In addition, "Split Core Structure" developed for and proven in MINAS series AC servo motors is introduced to these new brushless motors to further reduce their sizes but increase power.

These motors promote "three saving" activities
- Energy saving, Cost saving and Space saving.

\section*{GV KV GP Reduce loss and increase efficiency}

A permanent magnet on a rotor reduces secondary loss. It also reduces power consumption by \(20 \%\) compared with those of our small geared motors.

\section*{Energy saving} effects are significantly seen when these new models are used on multi-axis machines, e.g textile machinery.

MINAS-BL series Provide More Features

Proprietary CS sensor for Smooth operation

GV KV GP For simultaneous pursuit of miniaturization and high power
"Split core structure" developed for and proven in MINAS series AC servo motors is introduced to these new models to significantly reduce size and weight but increase output power compared with induction motors.
\(\qquad\)
Comparison in size between GV/GP series Retuction in porifile Comparison in mass between GV/GP
and our compact geared motors 90 W) series and our compact geared motors appro Output GV/GP series (motor) Our compact geared motor \begin{tabular}{|c|c|c}
50 W & 0.7 kg & \(2.4 \mathrm{~kg}(40 \mathrm{~W})\) \\
\hline
\end{tabular} \begin{tabular}{l|l|l}
90 W & 1.0 kg & 3.2 kg \\
\hline 130 W & 1.2 kg & -
\end{tabular}
-The size of a GV/GP series brushless amplifier is almos
Enable downsizing of embedded device.

\section*{GV KV GP They also reduce maintenance and setup cost.}

Commutatorless and brushless design reduces associated costs such as maintenance cost. Our setup support software helps prompt startup and reduction in operation management process. Setup support software PANATERM for BL

- Parameter setting

File saving
(Batch reading/writing)
 Waveform graphical lisplay
Example: Velocity and torque
Status of Status of IIO can also be

The PANATERM for BL allows easy setup of parameters. Waveform graphical display can
be used for precisely and
accurately monitoring motor conditions, reducing setup and maintenance workload

GV KV GP
Compatiole with
international standards

Compatible with wider power source voltage range \(\binom{\) Single-phase: \(100 \mathrm{~V}-120 \mathrm{~V}}{\) Single-Three-phase: \(200 \mathrm{~V}-240 \mathrm{~V}}\)

- High efficiency brushless motors realize energy saving.
- Distinctively controlled CS signal provides smooth operation through sinewave driving.
- Compatible with international standards (CE, UL, CCC and KC), and wider power source voltage range.
- The digital keypad (sold separately) and setup support software PANATERM for BL (available from our website, free of charge) enable parameter setting and monitoring.
-The proprietary CS sensor extends variable speed control range.
-Installation compatibility:GV series is compatible with our compact geared motors
KV series is compatible with our AC servo motors
-Environmental protection: IP65

Typical applications

Position Control
Type
\(G P_{\text {series }}\)

- Simple NC function enables easier positioning without help of a pulse unit.
-The proprietary CS sensor enables positioning without help of an external encoder.
- Compatible with international standards (CE, UL, CCC and KC), and wider power source voltage range.
- Internal teaching capability simplifies positioning operation.
-The digital keypad (sold separately) and setup support software PANATERM for BL (available from our website, free of charge) enable parameter setting and monitoring.
- Installation is compatible with our compact geared motors.
-Environmental protection: IP65

\section*{Brushless motor specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Item & \multicolumn{5}{|c|}{Specifications} \\
\hline Flange size & 80 mm sq . & \multicolumn{4}{|c|}{90 mm sq .} \\
\hline Motor model No. \({ }^{11}\) & MBMU5AZA \(\bigcirc\) & MBMU9A1A \(\bigcirc\) & MBMU9A2A \(\bigcirc\) & MBMU1E1A \(\bigcirc\) & MBMU1E2A \(\bigcirc\) \\
\hline Motor rated output (W) & 50 & \multicolumn{2}{|c|}{90} & \multicolumn{2}{|c|}{130} \\
\hline Voltage (V) & for 100/200 & for 100 & for 200 & for 100 & for 200 \\
\hline Rated torque (\(\mathrm{N} \cdot \mathrm{m}\)) & 0.16 & \multicolumn{2}{|c|}{0.29} & \multicolumn{2}{|c|}{0.41} \\
\hline Starting torque \({ }^{-2}(\mathrm{~N} \cdot \mathrm{~m})\) & 0.24 & \multicolumn{2}{|c|}{0.43} & \multicolumn{2}{|c|}{0.62} \\
\hline Rated input current (\(\mathrm{A}(\mathrm{rms}\))) & 0.53 & 1.00 & 0.50 & 1.30 & 0.72 \\
\hline Moment of inertia of rotor \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) & 0.12 & \multicolumn{2}{|c|}{0.27} & \multicolumn{2}{|c|}{0.36} \\
\hline Rating & \multicolumn{5}{|c|}{Continuous} \\
\hline Rated rotation speed \({ }^{\text {/3 }}\) (r/min) & \multicolumn{5}{|c|}{3000} \\
\hline Speed control range (r/min) & \multicolumn{5}{|c|}{30 to 4000} \\
\hline Ambient temperature & \multicolumn{5}{|l|}{\begin{tabular}{l}
\(-10^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) (free from freezing) \\
* Ambient temperature is measured at a distance of 5 cm from the motor.
\end{tabular}} \\
\hline Ambient humidity & \multicolumn{5}{|c|}{\(20 \%\) to \(85 \%\) RH (free from condensation)} \\
\hline Altitude & \multicolumn{5}{|c|}{Lower than 1000 m} \\
\hline Vibration & \multicolumn{5}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}\) or less \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\)} \\
\hline Motor insulation class & \multicolumn{5}{|c|}{130(B) (UL certified 105 (A))} \\
\hline Protection structure & \multicolumn{5}{|c|}{IP65 \({ }^{\text {4,5 }}\)} \\
\hline Number of poles & \multicolumn{5}{|c|}{8} \\
\hline Motor mass (kg) & 0.7 & \multicolumn{2}{|c|}{1.0} & \multicolumn{2}{|c|}{1.2} \\
\hline
\end{tabular}
"1 Suffix of " \(\bigcirc\) " in the motor model represents shape of shaft.
*2 Representative value
3 Motor shaft speed: to be multiplied by the reduction ratio when the gear head is used.
4 Excluding the shaft pass-through section and cable end connector. 5 These motors conform to the test conditions specified in EN stanards (EN60529, EN60034-5).
Do not use these motors in application where water proof performance is required such as continuous wash-down operation.

ut power supp
1: Single phase AC 100 V to 120 V 5: Single phase/ 3-phase AC200 V to 240 V information.
\(\square\) Overload protection characteristics

\section*{Brushless amplifier specifications (GV series)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Item} & \multicolumn{7}{|c|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Amplifier model No.} & MBEG5A1BCV & MBEG5A5BCV & MBEG9A1BCV & MBEG9A5BCV & MBEG1E1BCV & MBEG1 & E5BCV \\
\hline \multicolumn{2}{|l|}{Applicable Motor \({ }^{\text {¹ }}\)} & \multicolumn{2}{|c|}{MBMU5AZAO} & MBMU9A1AO & MBMU9A2AO & MBMU1E1AO & \multicolumn{2}{|l|}{MBMU1E2A} \\
\hline Motor rated out & ut (W) & \multicolumn{2}{|c|}{50} & \multicolumn{2}{|c|}{90} & \multicolumn{3}{|r|}{130} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Input power supply voltage
(V)}} & \multirow[t]{2}{*}{Single phase 100 to 120} & \[
\begin{array}{l|l|}
\hline \begin{array}{l}
\text { Single } \\
\text { phase }
\end{array} & \text { 3-phase } \\
\hline
\end{array}
\] & \multirow[t]{2}{*}{Single phase 100 to 120} & \multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\hline \begin{array}{c}
\text { Single } \\
\text { phase }
\end{array} & \text { 3-phase } \\
\hline 200 \text { to } 240 \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{Single phase 100 to 120} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|l|}
\hline \begin{array}{l}
\text { Single } \\
\text { phase }
\end{array} & \text { 3-phass } \\
\hline 200 \text { to } 240 \\
\hline
\end{array}
\]}} \\
\hline & & & 200 to 240 & & & & & \\
\hline \multicolumn{2}{|l|}{Frequency (Hz)} & \multicolumn{7}{|c|}{50/60} \\
\hline \multicolumn{2}{|l|}{Rated input current (A)} & 1.5 & \begin{tabular}{l|l|}
0.7 & 0.35 \\
\hline
\end{tabular} & 2.2 & 1.1 1 0.5 & 2.8 & 1.5 & 0.7 \\
\hline \multicolumn{2}{|l|}{Voltage tolerance} & \multicolumn{7}{|c|}{10 \%} \\
\hline \multicolumn{2}{|l|}{Control method} & \multicolumn{7}{|c|}{Speed control by CS signal, PWM sine wave driving system} \\
\hline \multicolumn{2}{|l|}{Ambient temperature} & \multicolumn{7}{|c|}{\begin{tabular}{l}
\(0^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) (free from freezing) \\
* Ambient temperature is measured at a distance of 5 cm from the amplifier.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Ambient humidity} & \multicolumn{7}{|c|}{\(20 \%\) to \(85 \%\) RH (free from condensation)} \\
\hline \multicolumn{2}{|l|}{Location} & \multicolumn{7}{|c|}{Indoor (No corrosive gas, A place without garbage, and dust)} \\
\hline \multicolumn{2}{|l|}{Altitude} & \multicolumn{7}{|c|}{Lower than 1000 m} \\
\hline \multicolumn{2}{|l|}{Vibration} & \multicolumn{7}{|c|}{\(5.9 \mathrm{~m} / \mathrm{s}^{2}\) or less (10 Hz to 60 Hz)} \\
\hline \multicolumn{2}{|l|}{Protection structure/ Cooling system} & \multicolumn{7}{|c|}{Equivalent to IP20/ Self cooling} \\
\hline \multicolumn{2}{|l|}{Storage temperature} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Normal temperature \\
* Temperature which is acceptable for a short time, such as during transportation is \(-20^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) (free from freezing)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Storage humidity} & \multicolumn{7}{|c|}{Normal humidity} \\
\hline \multicolumn{2}{|l|}{Rated rotation speed} & \multicolumn{7}{|c|}{\(3000 \mathrm{r} / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Speed control range} & \multicolumn{7}{|c|}{\(30 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) (Speed ratio 1:133)} \\
\hline \multirow[t]{3}{*}{} & th load & \multicolumn{7}{|c|}{\(\pm 0.5 \%\) or below (at 0 to Rated torque, Rated rotation speed)} \\
\hline & voltage & \multicolumn{7}{|c|}{\(\pm 0.5 \%\) or below (at supply voltage \(\pm 10 \%\), rated rotation speed)} \\
\hline & mperature & \multicolumn{7}{|c|}{\(\pm 0.5 \%\) or below (at \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\), rated rotation speed)} \\
\hline \multicolumn{2}{|l|}{Acceleration/ Deceleration time} & \multicolumn{7}{|c|}{0.01 sec to \(300 \mathrm{sec}(\text { time for changing } 1000 \mathrm{r} / \mathrm{min})^{2}\)} \\
\hline \multicolumn{2}{|l|}{Stopping procedure} & \multicolumn{7}{|c|}{Slowdown stop/ Free-run stop \({ }^{\text {22 }}\)} \\
\hline \multicolumn{2}{|l|}{Speed setting} & \multicolumn{7}{|c|}{\(0 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) (analogue voltage (0 V to 5 V), console A), \(0 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) (Setting selection by parameter on Digital key pad)} \\
\hline \multicolumn{2}{|l|}{Speed setting resolution} & \multicolumn{7}{|c|}{Analog: approx. 1/200 of upper speed limit Digital: \(1 \mathrm{r} / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Speed setting precision (at \(20^{\circ} \mathrm{C}\))} & \multicolumn{7}{|l|}{Analogue: \(\pm 3 \%\) or below of upper speed limit (\(\pm 90 \mathrm{r} / \mathrm{min}\) or below at upper speed limit \(3000 \mathrm{r} / \mathrm{min}\)) [Digital: \(1 \%\) or below of upper speed limit]} \\
\hline \multicolumn{2}{|l|}{Operation mode} & \multicolumn{7}{|c|}{8 speed} \\
\hline \multicolumn{2}{|l|}{Signal input} & \multicolumn{7}{|c|}{5 inputs \({ }^{2}\) (run/ stop, CW run/ CCW run, multi function 3bit)} \\
\hline \multicolumn{2}{|l|}{Signal output} & \multicolumn{7}{|c|}{2 outputs (Open collector) \({ }^{2}\) (Trip output etc)} \\
\hline \multirow[t]{2}{*}{Communication
function} & RS485 & \multicolumn{7}{|c|}{Max 31 units. Setting of parameter, monitoring of control condition. Communication speed: Choose from 2400 bps/ 4800 bps/ 9600 bps} \\
\hline & RS232 & \multicolumn{7}{|c|}{Setting of parameter and monitoring of control condition are enabled with commercial PC. \({ }^{3}\)} \\
\hline \multicolumn{2}{|l|}{Digital key pad} & \multicolumn{7}{|c|}{Setting of parameter, monitoring of control condition. \({ }^{4}\)} \\
\hline \multicolumn{2}{|l|}{Protective function} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Warning : Undervoltage \({ }^{2}\), Overload warning, setting change warning \\
Protect : Undervoltage \({ }^{2}\), Overload, Overcurrent, Overvoltage, Overheat, Overspeed, Sensor error, \\
RS485 communication error, External forced trip error, User parameter error, CPU error
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Regenerating brake} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Regenerative braking resistor can be externally connected. \({ }^{5}\) \\
Instantaneous braking torque \(200 \%\), Continuous regenerative ability of external regenerative resistor: 10 W (Regenerative operation with which motor shatt is rotated by load, e.g. load lowering operation, should not be continued.)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Protection level} & \multicolumn{7}{|c|}{Protection level: torque command 115 (inverse time characteristics)} \\
\hline \multicolumn{2}{|l|}{Amplifier mass (kg)} & \multicolumn{7}{|c|}{0.37} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
*1 Suffix of " \(\bigcirc\) " in the motor model represents shape of shaft. *2 Can be changed from PANATERM for BL or Digital key pad. \\
*3 PANATERM for BL (Download from our web site.), PC connection cable (DVOP4140), Digital key pad connection cable (DVOP383*0) is required. If your PC does not have RS232 port, use RS232-USB converter. \\
*4 Digital key pad connection cable (DVOP383*0) is required. *5 Use optional external regenerative resistor (sold separately).
\end{tabular}} \\
\hline
\end{tabular}

\section*{System configuration}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Power supply} & \multirow[t]{3}{*}{\[
\begin{array}{|l|l}
\text { Rated } \\
\text { rotation } \\
\text { roped } \\
\text { (rlmin) }
\end{array}
\]} & \multirow{3}{*}{outpu} & \multirow{3}{*}{Motor} & \multirow{3}{*}{Gear head (Note 1)} & \multirow{3}{*}{Brushless amplifier} & \multirow[t]{2}{*}{Brushless amplifier \(\left.\begin{array}{|c}\text { supplied with } \\ \text { power cabie }\end{array}\right)\) per cabla (Note 2)} & \multicolumn{4}{|c|}{Optional parts} \\
\hline & & & & & & & External
regenerative
resistor & Noise filter & \[
\begin{aligned}
& \text { Surge } \\
& \text { absorber }
\end{aligned}
\] & Reactor \\
\hline & & & & & & Reference page p. 74 & p. 71 & p. 67 & p. 67 & p. 7 \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& \text { Single } \\
& \text { phase } \\
& 100 \mathrm{~V}
\end{aligned}
\]} & \multirow{11}{*}{3000} & 50 & \[
\begin{array}{|l|l|}
\hline \text { MBMU5AZAX } \\
\hline \text { MBMU5AZAS } \\
\hline
\end{array}
\] & MX8G \(\square\) & MBEG5A1BCV & MBEG5A1BCVC & & & & \\
\hline & & 90 & MBMU9A1AZ & \[
\begin{array}{l|l|}
\hline \text { MZ9G } \square \mathbf{B} \\
\text { MY9G } \square \mathbf{B}
\end{array}
\] & MBEG9A1BCV & MBEG9A1BCVC & for 100 V & for single phase power supply & for single phase power supply & for single phas \\
\hline & & & MBMU9A1AS & - & & & & DVOP4170 & DVOP4190 & DVOP227 \\
\hline & & 130 & mbmu1E1AZ & MZ9G \(\square \mathbf{B}\)
MY9G \(\square \mathbf{B}\) & MBEG1E1BCV & MBEG1E1BCVC & & & & \\
\hline & & & MBMU1E1AS & - & & & & & & \\
\hline \multirow{6}{*}{Single/ 3-phase 200 V} & & 50 & MBMU5AZAX & MX8G \(\square \mathbf{B}\) & MBEG5A5BCV & MBEG5A5BCVC & \multirow{6}{*}{for 200 V DVOPM20068} & \multirow{6}{*}{for single phase power supply for 3-phase power supply DVOPM20042} & \multirow{6}{*}{for single phase
power supply DVOP4190 for 3-phase DVOP1450} & \multirow{6}{*}{for single phase
power supply DVOP227 for 3-phase DVOP220} \\
\hline & & & MBMU5AZAS & - & & & & & & \\
\hline & & \multirow[t]{2}{*}{90} & MBMU9A2AZ & \begin{tabular}{l}
MZ9G \(\square B\) \\
MY9G
\end{tabular} & \multirow[t]{2}{*}{MBEG9A5BCV} & \multirow[t]{2}{*}{mbeg9asblvc} & & & & \\
\hline & & & MBMU9A2AS & - & & & & & & \\
\hline & & \multirow[t]{2}{*}{130} & MBMU1E2AZ & MZ9G \(\square B\) MY9G \(\square\) & MBEG1E5BCV & mbeG1E5BCVC & & & & \\
\hline & & & MBMU1E2AS & - & & & & & & \\
\hline
\end{tabular}

Note 1) A figure representing reduction ratio in \(\square\).
Note 2) Refer to p. 74 for a power supply connecting cable.
This part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.
The supplied power connecting cable is for single-phase input, when supplying three-phase power; please make a cable using optional power connection kit ((DVOP2870)
* Be sure to use a set of matched components (series, power source, capacity, output, etc.)
* This motor is not provided with a holding brake. If it is used to drive a vertical shaft, the movable section may fall down by its own weight as power is turned off.

\section*{Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Optional parts} & Parts number & Reference pag & Optional parts & & Parts number & Reference \\
\hline \multirow{4}{*}{Motor extension cable} & 1 m & DVOPQ1000110 & \multirow{4}{*}{P. 69} & \multirow{3}{*}{Digital key pad connection cable} & 1 m & DVOP38310 & \multirow{3}{*}{P. 68} \\
\hline & 3 m & DVOPQ1000130 & & & 3 m & DVOP38330 & \\
\hline & 5 m & DVOPQ1000150 & & & 5 m & DVOP38350 & \\
\hline & 10 m & DV0PQ10001A1 & & \multicolumn{2}{|l|}{External speed setter} & DVOPM20078 & P. 71 \\
\hline \multicolumn{2}{|l|}{Power supply connector kit} & DVOP2870 & P. 70 & Control signal cable & 2 m & DVOPM20076 & P. 70 \\
\hline \multicolumn{2}{|l|}{Console A \({ }^{\text {+1 }}\)} & DVOP3500 & P. 68 & \multicolumn{2}{|l|}{1/O connector kit} & DVOPM20070 & P. 71 \\
\hline \multirow{3}{*}{Console A connection cable} & 1 m & DVOPM2006910 & \multirow{3}{*}{P. 68} & \multicolumn{2}{|l|}{Panel connector kit} & DVOP3610 & P. 71 \\
\hline & 3 m & DVOPM2006930 & & PC connection cable \({ }^{\text {-3 }}\) & 1.5 m & DVOP4140 & P. 70 \\
\hline & 5 m & DVOPM2006950 & & Noise filter for signal line & & DVOP1460 & P. 67 \\
\hline Digital key pad \({ }^{\text {2 }}\) & & DVOP3510 & P. 68 & DIN rail mounting unit & & DVOP3811 & P. 72 \\
\hline
\end{tabular}
\({ }^{*}\) For details of cable, refer to p. 68 to p. 70
1 When using Console A, the Console A connection cable (DVOPM20069*0) is required.
2 When using Digital key pad, the Digital key pad connection cable (DVOP383*0) is required
*3 When connecting PC, the PC connection cable (DVOP4140) and the Digital key pad connection cable (DVOP383*0) are required

\section*{Wiring equipment}

Selection of circuit breaker (MCCB), magnetic contactor and electric wire. (To check conformity with international standards, refer to p. 93 Conformity with international safety standards.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Voltage} & \multirow[b]{2}{*}{Power capacity} & \multirow[t]{2}{*}{MCCB Rated current} & \multirow[t]{2}{*}{Magnetic contactor Rated Current (Contact composition)} & \multicolumn{2}{|l|}{Core of electric wire (\(\mathrm{mm}^{2}\))} \\
\hline & & & & Main circuit, Grounding & Control circuit \\
\hline Single phase 100 V & \multirow[b]{2}{*}{50 W to 130 W} & \multirow[b]{2}{*}{5 A} & \multirow[t]{2}{*}{\[
\begin{gathered}
20 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \multirow[b]{2}{*}{0.5 (AWG20)} & \multirow[b]{2}{*}{0.13 (AWG26)} \\
\hline Single phase 200 V 3 -phase 200 V & & & & & \\
\hline
\end{tabular}

Be sure to connect the earth terminal to ground.
In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter (\(2.0 \mathrm{~mm}^{2}\)) or more both for - main circuit and gro

Selection of relay
A relay used in a control circuit, e.g. at the control input terminal should be small signal relay (Min. guaranteed current 1 mA or less)
for positive contact. <Example> Panasonic: DS type, HC type OMRON: G2A type
Whection of control circuit switch
When using a switch in place of relay, select a switch rated at minute electric current, to assure positive contact
<Example> Nihon Kaiheiki Ind.: M-2012J-G
- The wiring of SER and \(I / O\) connector
The wiring of SER and I/O connector sh

Wiring to the \(/ \mathbf{}\) and connector should separate from power line to prevent malfunction
Permissible length for control signal cable is 5 m or less.

\section*{System configuration diagram}
Example of analog setting (Console Set the speed with the speed setting knob
- Start/stop the motor from the RUN/STOP switch - To change rotating direction, use the rotation
direction selector switch.
When not using Con
Motor controls such as start/stop, direction change and speed setting can be don from external potentiometer
and switch through optional and switc control signal cable or I/O control signal
connector kit.

 (Option)
 Motor extension cable (Option)
Select if needed Select if needed
(to 10 m . PC connection
cable (Option)

Digital key pad
connection \(\begin{gathered}\text { (Option) }\end{gathered}\) connection
cable (Option) If your PC does not have RS232 port, If your PC does not have R
use RS232-USB converter.
\(\qquad\)

Example of digital setting
(Digital key pad)
-To start/stop the motor, use RUN/STOP key
Digital monitor [Rotation speed, Commanded speed, Internal DC voltage, Load factor, Torque, Trip history, Overload warning (flashing)] Set/change parameters
- Storage of the parameters (read, write)

\title{
Gear head GV series \\ rushless mot
}
 supply
\(\begin{gathered}\text { External speed setter } \\ \text { (Option: DVOPM20078) }\end{gathered}\)

Communication software PANATERM for BL (please download from our web site) monitor of a control state

\section*{- Power supply connection cable supply connector kit ((. 70 option) or Control signal cable
chose}

Control signal cable
 prose appropriate product among
wrocutitisted on p . 13 or r .74 ,
acich is to which is to be delivered with an
accessory

It can be used simultaneously

PC connection
cable (Option) cable (Option)

Bariable resister \(5 \mathrm{k} \Omega\)

\(\underset{\text { Direction }}{\text { Change of }} /\) Run/Stop

Digital key pad (Option) Digital display console. It enables change of
parameter. parameter from RUN/STOP key It cannot be used simultaneously.

If your PC does not have RS232 port,
use RS232-USB converter.

Parameter list of brushless amplifier

Specification (For Common specification, see p. 11, p. 12)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{Rated (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Starting (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Rated speed (r/min)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Maximum } \\
& \text { rotation } \\
& \text { speed } \\
& \text { (r/min) }
\end{aligned}
\]} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable & Motor & & Voltage AC (V) & Allowed range (\%) & Frequenc (Hz) & Rated input current (A) & & & & \\
\hline 80 mm & MBEG5A1BCV (MBEG5A1BCVC) & MBMU5AZA & \multirow{3}{*}{50} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & 1.5 & \multirow{3}{*}{0.16} & \multirow{3}{*}{0.24} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & \multirow[t]{2}{*}{MBEG5A5BCV (MBEG5A5BCVC)} & \multirow[t]{2}{*}{MBMU5AZA} & & \multirow[t]{2}{*}{\(\int_{\substack{\text { Single phase } \\ \text { 1-phase }}}^{200}\) to 240} & & & Single phase 0.7 & & & & \\
\hline & & & & & & & 3.phase 0.35 & & & & \\
\hline
\end{tabular}

\section*{- Permissible torque at output shaft of gear head (N•m)}
\begin{tabular}{|c|}
\hline Applicable Gear head & \multicolumn{2}{|l|}{Reduction ratio} & 3 & 3.6 & 5 & 6 & 7.5 & 9 & 10 & 12.5 & 15 & 18 & 20 & 25 & 30 & 3 & & 50 & 60 & 75 & 90 & 100 & 120 & 150 & 180 \\
\hline \multirow{3}{*}{MX8G \(\square\) B} & motor & 3000 or less & 0.39 & 0.46 & 0.64 & 0.77 & 0.96 & 1.16 & 1.29 & 1.61 & 1.92 & 2.33 & 2.59 & 3.2 & 3.6 & & & . 93 & 7.29 & & & 7.8 & 84 & & \\
\hline & speed
\((r / m i n)\) & 3000 to 4000 & 0.29 & 0.35 & 0.48 & 0.58 & 0.72 & 0.87 & 0.97 & 1.21 & 1.44 & 1.75 & 1.94 & 2.4 & 2.7 & 113 & 25 & 4 & 5.47 & 6.84 & & & 7.84 & & \\
\hline & \multicolumn{2}{|l|}{Rotational direction} & & & & & \multicolumn{5}{|l|}{Same as motor rotational direction} & & & & & \multicolumn{10}{|l|}{Reverse to motor rotational direction} \\
\hline
\end{tabular}

\section*{Permissible load inertia moment (\(\times 10^{-4} \mathbf{~ k g} \cdot \mathbf{m}^{\mathbf{2}}\))}

\(\square\) Permissible shaft load
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Motor and } \\
& \text { Gear head }
\end{aligned}
\]} & & & Overhung load (W) & \begin{tabular}{l}
Thrust load \\
(F)
\end{tabular} \\
\hline & \multirow[t]{2}{*}{Motor shaft (Round shaft)} & Output & \multirow{2}{*}{100 N} & \multirow{2}{*}{10 N} \\
\hline & & 50 W & & \\
\hline & Applicable Gear head & MX8G \(\square\) B & 294 N & 49 N \\
\hline
\end{tabular}

\section*{Wiring diagram}
- In Case of 3-Phase 200 V

\(\square \begin{gathered}\text { Speed-torque } \\ \text { characteristic }\end{gathered} \begin{aligned} & \text { Doteded line shows a characterisicic curve } \\ & \text { when supply voltage drops by }\end{aligned}\) (\(0 \%\).

In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter \(\left(2.0 \mathrm{~mm}^{2}\right)\) or more both for main circuit and grounding. Apply grounding class D (\(100 \Omega\) or below) for grounding. Do not tighten the ground wires together, but connect them individually.

Motor (dimensions)

\section*{Gear head (dimensions)}

Unit mm
MX8G \(\square\) B

<Key and keyway [attachment]>

Brushless amplifier (dimensions)

Please refer to P. 95 Support option

Specification (For Common specification, see p. 11, p. 12)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{Rated torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Starting torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Rated speed (r/min)} & \multirow[t]{2}{*}{Maximun speed (r/min)} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable with power connection cable & Motor & & \begin{tabular}{l}
Voltage \\
AC (V)
\end{tabular} & \[
\begin{gathered}
\text { Allowed } \\
\text { range } \\
\text { (\%) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Frequency } \\
& \text { (Hz }
\end{aligned}
\] & Rated input current (A) & & & & \\
\hline & MBEG9A1BCV (MBEG9A1BCVC) & MBMU9A1A \(\bigcirc\) & \multirow{3}{*}{90} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & 2.2 & \multirow{3}{*}{0.29} & \multirow{3}{*}{0.43} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & \multirow[t]{2}{*}{MBEG9A5BCV (MBEG9A5BCVC)} & \multirow[t]{2}{*}{MBMU9A2A} & & \multirow[t]{2}{*}{} & & & Snigle phase 1.1 & & & & \\
\hline & & & & & & & 3.phase 0.5 & & & & \\
\hline
\end{tabular}

\section*{- Permissible torque at output shaft of gear head (\(\mathbf{N} \cdot \mathbf{m}\))}
\begin{tabular}{|c|}
\hline Applicable Gear head & \multicolumn{2}{|l|}{Reduction ratio} & 3 & 3.6 & 5 & 6 & 7.5 & 9 & 10 & 12. & 515 & 18 & 2 & & 25 & 30 & 36 & 50 & 60 & 75 & 90 & 100 & 120 & 150180 & 200 \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& \text { MZ9G } \square B \\
& \text { MY9G } \square B
\end{aligned}
\]} & motor & 3000 or less & 0.67 & 0.81 & 1.12 & 1.34 & 1.69 & 2.0 & 22 & 82.5 & 43.06 & 3.7 & 24. & & 5.27 & 6.22 & 6.96 & 9.81 & 11.7 & 14.7 & 17.3 & 19.0 & & 19.6 & \\
\hline & \[
\begin{aligned}
& \text { speed } \\
& (\mathrm{r} / \mathrm{min})
\end{aligned}
\] & 3000 to 4000 & 0.50 & 0.61 & 0.84 & 1.01 & 1.27 & 1.5 & 21.7 & & 12.3 & 2.7 & 79.0 & & 3.95 & 4.67 & 5.22 & 7.36 & 8.78 & 11.0 & 13.0 & 14.3 & 17.0 & 19.6 & \\
\hline & \multicolumn{2}{|l|}{Rotational direction} & \multicolumn{7}{|l|}{Same as motor rotational direction} & \multicolumn{7}{|l|}{Reverse to motor rotational direction} & & \multicolumn{8}{|l|}{Same as motor rotational direction} \\
\hline
\end{tabular}
\(\square\) Permissible load inertia moment (\(\times 10^{-4} \mathbf{~ k g} \cdot \mathbf{m}^{2}\))
\begin{tabular}{|c|}
\hline Reduction ratio & 3 & 3.6 & 5 & 6 & 7.5 & 9 & 10 & 12.5 & 15 & 18 & 20 & 25 & 30 & 36 & 50 & 60 & 75 & 90 & 1001 & 150 & 18020 \\
\hline Applicable Gear head & \\
\hline MZ9G \(\square \mathbf{B} / \mathbf{M Y 9 G} \square \mathbf{B}\) & 5.93 & 8.47 & 16.4 & 23.6 & 37.3 & 53.4 & & 98.3 & 142 & 211 & 257 & 423 & 589 & 847 & & & & & 1684 & & \\
\hline
\end{tabular}

\section*{- Permissible shaft load}
\begin{tabular}{l|l|c|c|c|}
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|}
\hline
\end{tabular}

\section*{Motor (dimensions)}

\section*{Gear head (dimensions)}

MZ9G \(\square \mathbf{B}\) (Ball bearing/Hinge not attached)
mass
1.4

MY9G \(\square\) B (Ball bearing/Hinge attached)
Unit mm

<Key and keyway [attachment]>

Specification (For Common specification, see p. 11, p. 12)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{Rated torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Starting torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Rated speed (r/min)} & \multirow[t]{2}{*}{Maximum rotation (r/min) (r/min)} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable with power connection cable & Motor & & \begin{tabular}{l}
Voltage \\
AC (V)
\end{tabular} & \[
\begin{gathered}
\text { Allowed } \\
\text { range } \\
\text { (\%) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Frequency } \\
& \text { (Hz }
\end{aligned}
\] & Rated input current (A) & & & & \\
\hline & MBEG1E1BCV (MBEG1E1BCVC) & MBMU1E1A \(\bigcirc\) & \multirow{3}{*}{130} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & 2.8 & \multirow{3}{*}{0.41} & \multirow{3}{*}{0.62} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & \multirow[t]{2}{*}{MBEG1E5BCV (MBEG1E5BCVC)} & \multirow[t]{2}{*}{MBMU1E2A \(\bigcirc\)} & & \multirow[t]{2}{*}{\(\underbrace{200}_{\substack{\text { Single phase } \\ \text { B.phase }}}\) to 240} & & & Snigle phase 1.5 & & & & \\
\hline & & & & & & & 3.phase 0.7 & & & & \\
\hline
\end{tabular}

\section*{\(\square\) Permissible torque at output shaft of gear head (\(\mathrm{N} \cdot \mathrm{m}\))}
\begin{tabular}{|c|}
\hline Applicable Gear head & \multicolumn{3}{|l|}{Reduction ratio} & 3 & 3.6 & 5 & 6 & 7.5 & 9 & 10 & 12.5 & 15 & 18 & 20 & 25 & 30 & 36 & 50 & 60 & 75 & 90 & 100 & 120 & 150 & & 200 \\
\hline \multirow{4}{*}{\begin{tabular}{l}
MZ9G \(\square B\) \\
MY9G \(\square B\)
\end{tabular}} & \multirow[t]{3}{*}{motor rotation speed (r/min)} & \multicolumn{2}{|l|}{3000 or less} & 1.01 & 1.21 & 1.69 & 02 & 2.54 & 3.04 & 3.42 & 3.82 & 4.59 & 5.58 & 6.17 & 7.91 & 9.34 & 10.5 & 14.7 & 17.5 & \multicolumn{7}{|l|}{17.519 .6} \\
\hline & & 300 & 100 V & 0.59 & 0.71 & 0.99 & 18 & 1.49 & 1.78 & 2.00 & 2.24 & 2.69 & 3.27 & 3.61 & 4.63 & 5.47 & 6.15 & 8.60 & 10.2 & 12.9 & 15.4 & 17.2 & & 19.6 & 9.6 & \\
\hline & & \[
\begin{gathered}
\text { to } \\
4000
\end{gathered}
\] & 200 V & 0.76 & 0.91 & 1.27 & 52 & 1.91 & 2.28 & 2.57 & 2.87 & 3.4 & 4.19 & 4.63 & & 7.01 & 7.88 & 11.0 & & 16.5 & & & 19. & & & \\
\hline & \multicolumn{3}{|l|}{Rotational direction} & \multicolumn{2}{|l|}{Same as} & s motor & \multicolumn{4}{|l|}{rotational direction} & \multicolumn{2}{|l|}{Reverse to} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{ational direction} & & \multicolumn{9}{|l|}{Same as motor rotational direction} \\
\hline
\end{tabular}

\section*{\(\square\) Permissible load inertia moment \(\left(\times 10^{-4} \mathbf{~ k g} \cdot \mathbf{m}^{2}\right)\)}

Reduction ratio \(\qquad\)
 Applicable Gear hea 5.938 .4716 .423 .637 .353 .467 .698 .3142211257423

1684
\(\square\) Permissible shaft load
\begin{tabular}{l|l|c|c|c|}
\hline
\end{tabular} \begin{tabular}{|c|c|c|}
\hline
\end{tabular}

\section*{Wiring diagram}
- In C

In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter \(\left(2.0 \mathrm{~mm}^{2}\right)\) or more both for main circuit and grounding. Apply
grounding class \(\mathrm{D}(100 \Omega\) or below) for grounding. Do not tighten the ground wires grounding class \(\mathrm{D}(\mathrm{Coo} \Omega\) or below) for
\({ }^{*}\) Please refer to P. 95 Support option.
Before using, be sure to read "Instruction manual" to check precautions and correct procedure

\section*{Motor (dimensions)}

Gear head (dimensions)
MZ9G \(\square\) B (Ball bearing/Hinge not attached)
mass
1.4

MY9G \(\square\) B (Ball bearing/Hinge attached)
Unit mm \begin{tabular}{l}
mass \\
1.4 kg \\
\hline
\end{tabular}

<Key and keyway [attachment]>

\section*{Gear head GV series}

\section*{Outline of gear head}

\section*{Reduction ratio}

22 reduction ratios from \(1 / 3\) to \(1 / 180\) are available for the X type； 23 reduction ratios from \(1 / 3\) to \(1 / 200\) are available for the Y and Z types
Gear type
x： 50 W
Z： 90 W， 130 W（Hinge not attached）

Y： 90 W， 130 W（Hinge attached）

Backlash
Less than \(2^{\circ}\)（design value）
Type of gear head and reduction ratio
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Gear type} & \multirow[b]{2}{*}{Motor capacity} & \multicolumn{24}{|c|}{Reduction ratio} \\
\hline & & 1／3 & 1／3．6 & 1／5 & 1／6 & 17.5 & 1／9 & 1／10 & 12.5 & 1／15 & ／18 & 120 & 12 & 1／30 & 1／36 & & & 60 & 175 & 190 & ／100 & & & & \\
\hline X & 50 W & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & － & － & O & o & 0 & & O & & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & － \\
\hline Z，Y & \(90 \mathrm{~W}, 130 \mathrm{~W}\) & \(\bigcirc\) & o & 0 & 0 & O & & O & & \(\bigcirc\) \\
\hline
\end{tabular}

Check the Model number

\section*{Calculation of torque at output shaft of gear head}

\section*{－Standard gear head only}
\(\mathbf{N G}_{\mathbf{G}}=\frac{\mathbf{N M}}{\mathbf{i}}\)
Ng ：Speed of gear head
［r／min〕
TG ：Output torque of gear head \(\{\mathbf{N} \cdot \mathbf{m}\)
\(\mathrm{T}_{\mathbf{G}}=\mathbf{T M} \times \mathbf{i} \times \eta\)
Nm ：Motor speed
［r／min〕

Tм ：Motor torque 〔N•m \(\eta\) ：Gear head efficiency

\section*{Maximum permissible torque}

There is a limit to the strength of a gear due to its material and construction．The usable load torque determined based on this limit is called permissible torque．As can be seen from the above－mentioned formula，the load becomes larger when the reduction ratio is increased．If the gear head is used with the load exceeding the permissible torque，its life expectancy will be shortened significantly．Refer to the right graph and the permissible torque for each model and use the gear head at an

\section*{Maximum permissible torque}

appropriate load．
appropriate load．

33

\section*{Nominal reduction ratio and actual reduction ratio}

Note that there is a difference between the nominal reduction ratio and actual reduction ratio of each gear head．
The numbers in the following table represents the denominator of the actual reduction ratio Nominal reduction ratio

\section*{Gear head efficiency}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{18}{|c|}{Nominal reduction ratio} \\
\hline Gear type & 1／3 & 1／3．6 & 1／5 & 1／6 & 17.5 & 1／9 & 1／10 & 1／12．5 1／15 & 1／18 & 1／20 & 1／25 & 1／30 & 1／36 & 1／50 & 1／60 & 1／75 & 1／90 & 1／200 \\
\hline MX8G■B & \multicolumn{11}{|c|}{\(81 \%\)} & \multicolumn{7}{|c|}{\(75 \%\)} \\
\hline \[
\begin{aligned}
& \text { MZ9G } \square \mathbf{B} \\
& \text { MY9G } \square \mathbf{B} \\
& \hline
\end{aligned}
\] & \multicolumn{7}{|c|}{81 \％} & \multicolumn{5}{|c|}{\(79 \%\)} & \multicolumn{6}{|c|}{70 \％} \\
\hline
\end{tabular}

\section*{Gear head efficiency and ambient temperature}

Calculate the actual gear head efficiency by multiplying the above－shown gear head efficiency at room temperature by the torque reduction ratio shown right．

\section*{Gear head GV series}

Model list of gear head

\section*{Gear head}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Size & Reduction ratio & \multicolumn{3}{|c|}{Model No .} & Hinge \\
\hline \multirow{3}{*}{80 mm sq. (50 W)} & 1/3, 1/3.6, 1/5, 1/6, 1/7.5, 1/9, 1/10, 1/12.5, 1/15, 1/18 & MX8G3B & to & MX8G18B & \\
\hline & 1/20, 1/25, 1/30, 1/36 & MX8G20B & to & MX8G36B & \\
\hline & 1/50, 1/60, 1/75, 1/90, 1/100, 1/120, 1/150, 1/180 & MX8G50B & to & MX8G180B & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
90 mm sq. \\
(90 W•130 W \\
(Common use)
\end{tabular}} & 1/3, 1/3.6, 1/5, 1/6, 1/7.5, 1/9 & MZ9G3B & to & MZ9G9B & \\
\hline & 1/10, 1/12.5, 1/15, 1/18 & MZ9G10B & to & MZ9G18B & \\
\hline & 1/20, 1/25, 1/30, 1/36, 1/50, 1/60 & MZ9G20B & to & MZ9G60B & \\
\hline & 1/75, 1/90, 1/100, 1/120, 1/150, 1/180, 1/200 & MZ9G75B & to & MZ9G200B & \\
\hline & 1/3, 1/3.6, 1/5, 1/6, 1/7.5, 1/9 & MY9G3B & to & MY9G9B & \(\bigcirc\) \\
\hline & 1/10, 1/12.5, 1/15, 1/18 & MY9G10B & to & MY9G18B & \(\bigcirc\) \\
\hline & 1/20, 1/25, 1/30, 1/36, 1/50, 1/60 & MY9G20B & to & MY9G60B & \(\bigcirc\) \\
\hline & 1/75, 1/90, 1/100, 1/120, 1/150, 1/180, 1/200 & MY9G75B & to & MY9G200B & \(\bigcirc\) \\
\hline
\end{tabular}
*For the specifications for each item, refer to the page of the motor to which it can be applied

\section*{Gear head accessory}

\section*{Ball bearing}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Reduction} & \multirow[b]{2}{*}{Model No.} & \multicolumn{4}{|c|}{Accessory} \\
\hline Size & & & Screw (mm) & Flat & Hexagon & Key \\
\hline 80 mm sq . & 1/3 to 1/180 & MX8G3B to MX8G180B & \begin{tabular}{l}
M5 \(\times 55\) \\
pan head screw
\end{tabular}\(\quad: 4\) & for M5: 4 & M5:4 & \[
\begin{aligned}
& 4 \times 4 \times 25 \\
& \text { one-end round }: 1
\end{aligned}
\] \\
\hline \multirow{2}{*}{90 mm sq.} & 1/3 to \(1 / 200\) & MZ9G3B to MZ9G200B & \begin{tabular}{l}
M6 \(\times 85\) \\
hexagon socket head bolt \(: 4\)
\end{tabular} & for M6: 4 & M6:4 & \[
\begin{aligned}
& 5 \times 5 \times 25 \\
& \text { one-end round }: 1
\end{aligned}
\] \\
\hline & 1/3 to 1/200 & MY9G3B to MY9G200B & \begin{tabular}{l}
M6 \(\times 25\) \\
hexagon socket head bolt \(: 4\)
\end{tabular} & for M6: 4 & M6:4 & \[
\begin{aligned}
& 5 \times 5 \times 25 \\
& \text { one-end round }: 1
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{O-ring}

Repair parts 10pcs/bag
\begin{tabular}{|c|c|}
\hline Size & Part No. \\
\hline \(\mathbf{8 0 ~ m m ~ s q . ~}\) & DVOPN10008 \\
\hline \(\mathbf{9 0 ~ m m ~ s q . ~}\) & DVOPN10009 \\
\hline
\end{tabular}

Assemble with motor pinion faced up.
Outward direction of motor leadwire can be aligned with any one of
4 sides of gear head with an output shaft at a different position.

. 60 mm square 200 W

\footnotetext{
Contents
Check the model number .. 27 Brushless motor specifications Brushless amplifier specifications 27
System configuration/ System configuration diagram ...
Parameter list of brushless amplifier. Brushless motors - Details.
}

\section*{Check the model number}

Brushless motor specifications

\section*{Brushless amplifier specifications (KV series)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Item} & \multicolumn{8}{|c|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Amplifier model No .} & \multicolumn{2}{|l|}{MBEK5A1BCV MBEK5A5BCV} & MBEK011BCV & MBEK015BCV & MBEK021BCV & MBEK025BCV & MBEK045BCV & MBEK083BCV \\
\hline \multicolumn{2}{|l|}{Applicable Motor \({ }^{-1}\)} & \multicolumn{2}{|l|}{MBMS5AZBLO} & \multicolumn{2}{|l|}{MBMS011BLO MBMS012BLO} & MBMS021BLO & MBMS022BLO & MBMS042BLO & MBMS082BLO \\
\hline \multicolumn{2}{|l|}{Motor rated output (W)} & \multicolumn{2}{|r|}{50} & \multicolumn{2}{|r|}{100} & \multicolumn{2}{|r|}{200} & 400 & 750 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Input power supply voltage (V)}} & Single phase & Single \({ }_{\text {dhase }}\) 3-phase & \multirow[t]{2}{*}{Single phase 100 to 120} & Single \(\begin{aligned} & \text { Shase } \\ & \text { 3-phase }\end{aligned}\) & \multirow[t]{2}{*}{Single phase
100 to 120} & \[
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { Single } \\
\text { phase }
\end{array} & 3 \text { phe }
\end{array}
\] & Single \(\begin{aligned} & \text { phase }\end{aligned}\) 3-phase & 3 -phase \\
\hline & & 100 to 120 & 200 to 240 & & 200 to 240 & & 200 to 240 & 200 to & 40 \\
\hline \multicolumn{2}{|c|}{Frequency (Hz)} & \multicolumn{8}{|c|}{50/60} \\
\hline \multicolumn{2}{|l|}{Rated input current (A)} & 1.8 & \begin{tabular}{l|l|l|}
0.9 & 0.5 \\
\hline
\end{tabular} & 2.4 & \begin{tabular}{l|l|}
1.3 & 0.7 \\
\hline
\end{tabular} & 4.2 & \begin{tabular}{l|l|l|}
2.1 & 1.2 \\
\hline
\end{tabular} & \begin{tabular}{l|l|l|}
3.8 & 2.1 \\
\hline
\end{tabular} & 4.0 \\
\hline \multicolumn{2}{|l|}{Voltage tolerance} & \multicolumn{8}{|c|}{\(\pm 10\) \%} \\
\hline \multicolumn{2}{|c|}{Control method} & \multicolumn{8}{|c|}{Speed control by CS signal, PWM sine wave driving system} \\
\hline \multicolumn{2}{|l|}{Ambient temperature} & \multicolumn{8}{|c|}{\begin{tabular}{l}
\(0^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) (free from freezing) \\
* Ambient temperature is measured at a distance of 5 cm from the amplifier.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Ambient humidity} & \multicolumn{8}{|c|}{\(20 \%\) to \(85 \% \mathrm{RH}\) (free from condensation)} \\
\hline \multicolumn{2}{|c|}{Location} & \multicolumn{8}{|c|}{Indoor (No corrosive gas, A place without garbage, and dust)} \\
\hline \multicolumn{2}{|c|}{Altitude} & \multicolumn{8}{|c|}{Lower than 1000 m} \\
\hline & & \multicolumn{8}{|c|}{\(5.9 \mathrm{~m} / \mathrm{s}^{2}\) or less (10 Hz to 60 Hz)} \\
\hline \multicolumn{2}{|l|}{Protection structure/ Cooling system} & \multicolumn{8}{|c|}{Equivalent to IP20/ Self cooling} \\
\hline \multicolumn{2}{|l|}{Storage temperature} & \multicolumn{8}{|l|}{\begin{tabular}{l}
Normal temperature \\
* Temperature which is acceptable for a short time, such as during transportation is \(-20^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) (free from freezing)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Storage humidity} & \multicolumn{8}{|c|}{Normal humidity} \\
\hline \multicolumn{2}{|l|}{Rated rotation speed} & \multicolumn{8}{|c|}{\(3000 \mathrm{r} / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Speed control range} & \multicolumn{8}{|c|}{\(100 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\)} \\
\hline \multirow[t]{3}{*}{Speed
fluctuation
factor factor} & With load & \multicolumn{8}{|c|}{\(\pm 0.5 \%\) or below (at 0 to Rated torque, Rated rotation speed)} \\
\hline & \multirow[t]{2}{*}{on \begin{tabular}{|c}
With voltage \\
\hline With temperature \\
\hline
\end{tabular}} & \multicolumn{8}{|c|}{\(\pm 0.5 \%\) or below (at supply voltage \(\pm 10 \%\), rated rotation speed)} \\
\hline & & \multicolumn{8}{|c|}{\(\pm 0.5 \%\) or below (at \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\), rated rotation speed)} \\
\hline \multicolumn{2}{|l|}{Acceleration/ Deceleration time} & \multicolumn{8}{|c|}{0.01 sec to 300 sec (time for changing \(1000 \mathrm{r} / \mathrm{min})^{-2}\)} \\
\hline \multicolumn{2}{|l|}{Stopping procedure} & \multicolumn{8}{|c|}{Slowdown stop/ Free-run stop \({ }^{\text {22 }}\)} \\
\hline \multicolumn{2}{|c|}{Speed setting} & \multicolumn{8}{|c|}{\(0 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) (analogue voltage (0 V to 5 V), console A), \(0 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) (Setting selection by parameter on Digital key pad)} \\
\hline \multicolumn{2}{|l|}{Speed setting resolution} & \multicolumn{8}{|c|}{Analog: approx. 1/200 of upper speed limit Digital: \(1 \mathrm{r} / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Speed setting precision
\[
\text { (at } 20^{\circ} \mathrm{C} \text {) }
\]} & \multicolumn{8}{|l|}{Analogue: \(\pm 3 \%\) or below of upper speed limit (\(\pm 90 \mathrm{r} / \mathrm{min}\) or below at upper speed limit \(3000 \mathrm{r} / \mathrm{min}\)) [Digital: \(1 \%\) or below of upper speed limit]} \\
\hline \multicolumn{2}{|c|}{Operation mode} & \multicolumn{8}{|r|}{8 speed} \\
\hline & & \multicolumn{8}{|c|}{5 inputs \({ }^{\text {2/ }}\) (run/ stop, CW run/ CCW run, multi function 3 bit)} \\
\hline & & \multicolumn{8}{|c|}{2 outputs (Open collector) \({ }^{2}\) (Trip output etc)} \\
\hline \multirow[t]{2}{*}{Communication
function} & RS485 & \multicolumn{8}{|c|}{Max 31 units. Setting of parameter, monitoring of control condition. Communication speed: Choose from \(2400 \mathrm{bps} / 4800 \mathrm{bps} / 9600 \mathrm{bps}\)} \\
\hline & RS232 & \multicolumn{8}{|c|}{Setting of parameter and monitoring of control condition are enabled with commercial PC. \({ }^{3}\)} \\
\hline \multicolumn{2}{|c|}{Digital key pad} & \multicolumn{8}{|c|}{Setting of parameter, monitoring of control condition. \({ }^{4}\)} \\
\hline \multicolumn{2}{|l|}{Protective function} & \multicolumn{8}{|l|}{\begin{tabular}{l}
Warning : Undervoltage \({ }^{-2}\), Overload warning, setting change warning \\
Protect : Undervoltage \({ }^{-2}\), Overload, Overcurrent, Overvoltage, Overheat, Overspeed, Sensor error, RS485 communication error, External forced trip error, User parameter error, CPU error
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Regenerating brake} & \multicolumn{8}{|l|}{\begin{tabular}{l}
Regenerative braking resistor can be externally connected. \({ }^{5}\) \\
Instantaneous braking torque \(200 \%\), Continuous regenerative ability of external regenerative resistor: 10 W (Regenerative operation with which motor shaft is rotated by load, e.g. load lowering operation, should not be continued.)
\end{tabular}} \\
\hline \multicolumn{2}{|c|}{Protection level} & \multicolumn{8}{|c|}{Protection level: torque command 115 (inverse time characteristics)} \\
\hline \multicolumn{2}{|l|}{Amplifier mass (kg)} & \multicolumn{8}{|c|}{0.37 (\(50 \mathrm{~W}, 100 \mathrm{~W}\)) / 1.0 (200 W to 750 W)} \\
\hline
\end{tabular}
\({ }^{*}\). Suffix of " \(D\) " in the motor model represents shape of shaft. *2 Can be changed from PANATERM for BL or Digital key pad.
*3 PANATERM for BL (Download from our web site.), PC connection cable (DVOP4140), Digital key pad connection cable (DVOP383*0) is required. If your PC does not have RS232 port, use RS232-USB converter.
\({ }^{*} 4\) Digital key pad connection cable (DVOP383*) is required. *5 Use optional external regenerative resistor (sold separately).

\section*{System configuration (\(50 \mathrm{~W}, 100 \mathrm{~W}\))}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Power supply} & \multirow[t]{3}{*}{\[
\left.\begin{array}{|l|l}
\text { Rated } \\
\text { rotation } \\
\text { speed } \\
\text { (rlmin) }
\end{array}\right)
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \text { output } \\
& \text { (W) }
\end{aligned}
\]} & \multirow{3}{*}{Motor} & \multirow{3}{*}{Brushless amplifier} & \multirow[t]{2}{*}{Brushless amplifier \(\binom{\) supplied with }{ power cable } (Note 2)} & \multicolumn{4}{|c|}{Optional parts} \\
\hline & & & & & & \[
\begin{array}{|c|}
\hline \text { External } \\
\text { regenerative } \\
\text { resistor }
\end{array}
\] & Noise filter & Surge
absorber absorber & Reactor \\
\hline & & & & & Reference page p .74 & p. 71 & p. 67 & p. 67 & p. 73 \\
\hline \multirow[t]{2}{*}{Single phase
\[
100 \mathrm{~V}
\]} & \multirow{4}{*}{3000} & 50 & MBMS5AZBLO & MBEK5A1BCV & MBEK5A1BCVC & \multirow[t]{2}{*}{\begin{tabular}{l}
for 100 V \\
DVOP2890
\end{tabular}} & \multirow[t]{2}{*}{for single phase power supply DVOP4170} & \multirow[t]{2}{*}{for single phase power supply DVOP4190} & \multirow[t]{2}{*}{for single phase power supply DVOP227} \\
\hline & & 100 & MBMS011BLO & MBEK011BCV & MBEK011BCVC & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Single/ \\
3-phase \\
200 V
\end{tabular}} & & 50 & MBMS5AZBL○ & MBEK5A5BCV & mbek5ajbcve & \multirow[b]{2}{*}{\[
\begin{array}{|c|}
\hline \text { for } 200 \mathrm{~V} \\
\text { DVOPM20068 }
\end{array}
\]} & \multirow[t]{2}{*}{for single phase power supply DV0P4170 for 3-phase power supply DVOPM20042} & \multirow[t]{2}{*}{for single phase power supply DVOP4190 for 3-phase DVOP1450} & \multirow[t]{2}{*}{for single phase power supply DVOP227 for 3-phase DVOP220} \\
\hline & & 100 & MBMS012BLO & MBEK015BCV & mbek015BCvC & & & & \\
\hline
\end{tabular}
(Note 1) \(O\) : Refer to the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{6}{|c|}{ O: Refer to the table beew. }} & \multicolumn{4}{|c|}{ Shaft shape } \\
\cline { 3 - 5 } & Round & \begin{tabular}{c}
Keyway, \\
center tap
\end{tabular} & D-cut \\
\hline \multirow{2}{*}{ Oil seal } & Without & A & S & N \\
\cline { 2 - 5 } & With & C & \(\mathbf{U}\) & \(\mathbf{Q}\) \\
\hline
\end{tabular}

Note 2) Refer to p .74 for a power supply connecting cable.
The supplied power connecting cable is for singe amplifier and power cable, not for ordering amplifier only. The suppiied power connecting cable is for single-phase input, when supplying three-phase power; please make a cable using When installing the reactor, refer to \(p\). 73 .

\section*{* This more to is a set of matched components (power source, capacity, output, etc.) \\ This motor is not provided with a holding brake. If it is used to drive a vertical shaft, the movable section may fall down by its own weight as power is turned off.}

\section*{Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Optional parts} & Parts number & Reference pag & Optional parts & & Parts number & Reference page \\
\hline \multirow{4}{*}{Motor extension cable} & 1 m & DVOPQ1000310 & \multirow{4}{*}{P. 69} & \multirow{3}{*}{Digital key pad connection cable} & 1 m & DVOP38310 & \multirow{3}{*}{P. 68} \\
\hline & 3 m & DVOPQ1000330 & & & 3 m & DVOP38330 & \\
\hline & 5 m & DVOPQ1000350 & & & 5 m & DVOP38350 & \\
\hline & 10 m & DVOPQ10003A1 & & \multicolumn{2}{|l|}{External speed setter} & DVOPM20078 & P. 71 \\
\hline \multicolumn{2}{|l|}{Power supply connector kit} & DVOP2870 & P. 70 & Control signal cable & 2 m & DVOPM20076 & P. 70 \\
\hline \multicolumn{2}{|l|}{Console \(\mathrm{A}^{\text {¹ }}\)} & DVOP3500 & P. 68 & \multicolumn{2}{|l|}{1/O connector kit} & DVOPM20070 & P. 71 \\
\hline \multirow{3}{*}{Console A connection cable} & 1 m & DVOPM2006910 & \multirow{3}{*}{P. 68} & \multicolumn{2}{|l|}{Panel connector kit} & DV0P3610 & P. 71 \\
\hline & 3 m & DVOPM2006930 & & \multicolumn{2}{|l|}{} & DVOP4140 & P. 70 \\
\hline & 5 m & DVOPM2006950 & & \multicolumn{2}{|l|}{Noise filter for signal line} & DVOP1460 & P. 67 \\
\hline \multicolumn{2}{|l|}{Digital key pad \({ }^{\text {2 }}\)} & DVOP3510 & P. 68 & \multicolumn{2}{|l|}{DIN rail mounting unit} & DV0P3811 & P. 72 \\
\hline
\end{tabular}

For details of cable, refer to p. 68 to p. 70
2 When using Console A, the Console A connection cable (DVOPM20069) is required.
2 When using Digital key pad, the Digital key pad connection cable (DVOP383*0) is required
(DVOP383*0) are required

\section*{Wiring equipment}

Selection of circuit breaker (MCCB), magnetic contactor and electric wire. (To check conformity with international standards, refer o p. 93 Conformity with international safety standards.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Voltage} & \multirow[b]{2}{*}{Power capacity} & \multirow[t]{2}{*}{\begin{tabular}{l}
мсСв \\
Rated current
\end{tabular}} & \multirow[t]{2}{*}{Magnetic contactor Rated Current (Contact composition)} & \multicolumn{2}{|l|}{Core of electric wire (\(\mathrm{mm}^{2}\))} \\
\hline & & & & Main circuit, Grounding & Control circuit \\
\hline Single phase 100 V & \multirow[b]{2}{*}{\(50 \mathrm{~W}, 100 \mathrm{~W}\)} & \multirow[b]{2}{*}{5 A} & \multirow[t]{2}{*}{\[
\begin{gathered}
20 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \multirow[b]{2}{*}{0.5 (AWG20)} & \multirow[b]{2}{*}{0.13 (AWG26)} \\
\hline Single phase 200 V & & & & & \\
\hline
\end{tabular}

Be sure to connect the earth terminal to ground. In wirring to power supply (outside of equipment) from MCCB, use an electric wire of
main circuit and grounding. Apply grounding class D (\(100 \Omega\) or below) for grounding.
- Selection of relay

A relay used in a control circuit, e.g. at the control input terminal should be small signal relay (Min. guaranteed current 1 mA or less) for positive contact. <Example>Pa
- Selection of control circuit switch
When using a switch in place of relay, select a switch rated at minute electric current, to assure positive contact.
<Example> Nihon Kaiheiki Ind.: M-2012J-G
The wiring of SER and I/O connector
Wiring to the I/O connector
Permissible length for control signal cable is 5 m or less.

\section*{System configuration diagram (\(50 \mathrm{~W}, 100 \mathrm{~W}\))}

Example of digital setting
(Digital key pad)
- To start/stop the motor, use RUN/STOP key - Digital monitor [Rotation speed, Commanded speed, Internal DC voltage, Load factor, Torque, Trip history, Overload warning (flashing)] Set/change parameters
- Storage of the parameters (read, write)

\section*{- Power supply connection cable}

 Which is to be delivered with an
accessory power cable
is to be delivered w
sory powe cable.
It can be use
It can be used simultaneously
connector connector I/O and digital key pad

 B characteresisis 5 k k \(B\) characaleisisic \(1 / 4 \mathrm{~W}\) or more

Communication software PANATERM for BL (please download from our web site)
Change of parameter setting monitor of a control state

\footnotetext{
\(\begin{array}{lll}\text { Personal computer (Customer preparation) } & \text { If your PC does not have R } \\ \text { use RS232-USB converter. }\end{array}\)
}

\section*{System configuration (200 W to 750 W)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Power supply} & \multirow[b]{3}{*}{Rated speed (r/min)} & \multirow{3}{*}{output
(W)} & \multirow{3}{*}{Motor (Note 1)} & \multirow{3}{*}{Brushless amplifier} & \multicolumn{4}{|c|}{Optional parts} \\
\hline & & & & & External
\begin{tabular}{c}
regenerative \\
resistor
\end{tabular} & Noise filter & Surge absorber & Reactor \\
\hline & & & & & Reference page p .71 & p. 67 & p. 67 & p. 73 \\
\hline Single phase 100 V & \multirow{4}{*}{3000} & 200 & MBMS021BL○ & MBEK021BCV & for 100 V DVOP2890 & for single phase
power supply DVOP4170 & for single phase power supply DVOP4190 & for single phase
power supply DVOP228 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Single/ \\
3-phase \\
200 V
\end{tabular}} & & 200 & MBMS022BL○ & MBEK025BCV & \multirow{3}{*}{for 200 V DVOPM20068} & \multirow[t]{2}{*}{for single phase power supply DVOP4170 for 3-phase power supply DVOPM20042} & \multirow[t]{2}{*}{for single phase power supply DVOP4190 for 3-phase power supply} & \multirow[t]{2}{*}{for single phase power supply DV0P227 for 3-phase DVOP220} \\
\hline & & 400 & MBMS042BL○ & MBEK045BCV & & & & \\
\hline 3-phase & & 750 & MBMS082BL○ & MBEK083BCV & & for 3-phase power supply DVOPM20042 & for 3-phase power supply DV0P1450 & for 3-phase
power supply DVOP220 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{(Note 1)} & \multicolumn{5}{|l|}{O : Refer to the table below.} \\
\hline & & & \multicolumn{3}{|c|}{Shaft shape} \\
\hline & & & Round & Keyway, center tap & D-cut \\
\hline & \multirow[b]{2}{*}{Oil seal} & Without & A & S & N \\
\hline & & With & c & U & Q \\
\hline
\end{tabular}

When installing the reactor, refer to p. 73.
* Be sure to use a set of matched components (power source, capacity, output, etc.)
* This motor is not provided with a holding brake. If it is used to drive a vertical shaft, the movable section may fall down by its own weight as power is turned off.

\section*{\(\square\) Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Optional parts} & Parts number & Reference & Optional parts & & Parts number & Reference
page \\
\hline \multirow{4}{*}{Motor extension cable} & 1 m & DV0PQ1000310 & \multirow{4}{*}{P. 69} & \multirow[b]{3}{*}{Digital key pad connection cable} & 1 m & DVOP38310 & \multirow{3}{*}{P. 68} \\
\hline & 3 m & DVOPQ1000330 & & & 3 m & DVOP38330 & \\
\hline & 5 m & DV0PQ1000350 & & & 5 m & DVOP38350 & \\
\hline & 10 m & DV0PQ10003A1 & & \multicolumn{2}{|l|}{External speed setter} & DVOPM20078 & P. 71 \\
\hline \multicolumn{2}{|l|}{Console A \({ }^{\text {¹ }}\)} & DVOP3500 & P. 68 & Control signal cable & 2 m & DVOPM20076 & P. 70 \\
\hline \multirow[b]{3}{*}{Console A connection cable} & 1 m & DVOPM2006910 & \multirow{3}{*}{P. 68} & \multicolumn{2}{|l|}{1/O connector kit} & DVOPM20070 & P. 71 \\
\hline & 3 m & DVOPM2006930 & & \multicolumn{2}{|l|}{Panel connector kit} & DVOP3610 & P. 71 \\
\hline & 5 m & DV0PM2006950 & & PC connection cable \({ }^{3}\) & 1.5 m & DV0P4140 & P. 70 \\
\hline \multicolumn{2}{|l|}{Digital key pad \({ }^{\text {2 }}\)} & DV0P3510 & P. 68 & \multicolumn{2}{|l|}{Noise filter for signal line} & DVOP1460 & P. 67 \\
\hline
\end{tabular}
* For details of cable, refer to p. 68 to p. 70.
*1 When using Console A, the Console A connection cable (DVOPM20069*0) is required.
2 When using Digital key pad, the Digital key pad connection cable (DVOP383*0) is required
When connecting PC, the PC connection cable (DVOP4140) and the Digital key pad connection cable (DVOP383*0) are required.

\section*{Wiring equipment}

Selection of circuit breaker (MCCB), magnetic contactor and electric wire. (To check conformity with international standards, refer op. 93 Conformity with international safety standards.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Voltage} & \multirow[b]{2}{*}{Power capacity} & \multirow[t]{2}{*}{мсСB Rated current} & \multirow[t]{2}{*}{Magnetic contactor Rated Current (Contact composition)} & \multicolumn{2}{|l|}{Core of electric wire (\(\mathrm{mm}^{2}\))} \\
\hline & & & & Main circuit, Grounding & Control circuit \\
\hline Single phase 100 V & 200 W & 10 A & \multirow{4}{*}{\[
\begin{gathered}
20 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \multirow{4}{*}{0.75 (AWG18)} & \multirow{4}{*}{0.13 (AWG26)} \\
\hline Single phase 200 V & 200 W & 5 A & & & \\
\hline \multirow[b]{2}{*}{3-phase 200 V} & 4000 W & 10 A & & & \\
\hline & 750 W & 10 A & & & \\
\hline
\end{tabular}

Be sure to connect the earth terminal to ground.
In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter (\(2.0 \mathrm{~mm}^{2}\)) or more both for main circuit and grounding. Apply grounding class D (\(100 \Omega\) or below) for grounding.
- Selection of relay

A relay used in a control circuit, e.g. at the control input terminal should be small signal relay (Min. guaranteed current 1 mA or less) for positive contact. <Example> Pa
When using a switch in place of relay, select a switch rated at minute electric current, to assure positive contact
<Example> Nihon Kaiheiki Ind.: M-2012J-G
- The wiring of SER and I/O connector

The wiring of SER and I/O connector should separate from power line to prevent malfunction.
Permissible length for control signal cable is 5 m or less.

\section*{System configuration diagram (200 W to 750 W)}
Example of analog setting (Console Set the speed with the speed setting knob
(variable resistor)
- Start/stop the motor from the RUN/STOP switch.
- To change rotating direction, use the rotation
direction selector switch.
When not using Console
Motor controls such as start/stop, direction chang and speed setting can be done from external potentiometer
and switch through optional control signal cable or I/O connector kit.

\section*{Recommended Pin Termin.
NICHIFI TERMINAL Ind.
TGN TC}

Control signal cab

\(\qquad\)
Communication software PANATERM for BL
(please download from our web site)
Change of parameter setting
monitor of a control state
your PC does not have RS232 port,
(Example 200 W
Personal computer (Customer preparation)
Example of digital setting
(Digital key pad)
- To start/stop the motor, use RUN/STOP key - Digital monitor [Rotation speed, Commanded speed, Internal DC voltage, Load factor, Torque, Trip history, Overload warning (flashing)] Set/change parameters
- Storage of the parameters (read, write)

\section*{Parameter list of brushless amplifier}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Parameter name & \multicolumn{5}{|c|}{Explanation} & \multicolumn{3}{|c|}{Setting range} \\
\hline 00 & Internal speed (0-th speed) & \multicolumn{5}{|l|}{Desired running speed can be set with the Digital key pad.} & \multicolumn{3}{|l|}{0 r/min to Upper speed limit [Minimum unit \(1 \mathrm{r} / \mathrm{min}\)]} \\
\hline \[
\begin{aligned}
& 01 \\
& \text { to } \\
& 07
\end{aligned}
\] & 1st speed to 7th speed & \multicolumn{5}{|l|}{Speed in multi-speed running can be set.} & \multicolumn{3}{|l|}{\(0 \mathrm{r} / \mathrm{min}\) to Upper speed limit [Minimum unit \(1 \mathrm{r} / \mathrm{min}\)]} \\
\hline \[
\begin{aligned}
& 10 \\
& 11
\end{aligned}
\] & 1st acceleration time 2nd acceleration time & \multicolumn{5}{|l|}{The change factor of output speed in acceleration can be determined. Set by time for changing \(1000 \mathrm{r} / \mathrm{min}\).} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.01 \text { sec to } 300 \text { sec } \\
& {\left[\begin{array}{l}
\text { to } 3 \text { sec: } \\
\text { Incremented by } 0.01 \text { second } \\
3 \text { sec to } 30 \text { sec: } \\
\text { Incremented by } 0.1 \text { second } \\
30 \text { sec to } 300 \text { sec: } \\
\text { Incremented by } 1 \text { second }
\end{array}\right.}
\end{aligned}
\]}} \\
\hline \[
\begin{aligned}
& 12 \\
& 13
\end{aligned}
\] & 1st deceleration time 2nd deceleration time & \multicolumn{5}{|l|}{The change factor of output speed in deceleration can be determined. Set by time for changing \(1000 \mathrm{r} / \mathrm{min}\).} & & & \\
\hline 14
15 & \begin{tabular}{l}
Acceleration mode selection \\
Deceleration mode selection
\end{tabular} & \multicolumn{5}{|l|}{Straight line acceleration/deceleration and curve (S-shape) acceleration and deceleration can be chosen individually for acceleration and deceleration.} & \multicolumn{3}{|l|}{Select S-shape when " 31 Speed command selection" is PnL.} \\
\hline 16 & Stop mode selection & \multicolumn{5}{|l|}{You can select how to stop the motor when stop command is input: free-run stop or stop after deceleration.} & & & \\
\hline 17 & Free-run waiting time & \multicolumn{5}{|l|}{When the stop mode is set to deceleration stop, the zero speed (servo lock time) after deceleration can be adjusted.} & \multicolumn{3}{|l|}{0.0 sec to 10.0 sec
[Minimum unit 0.1 sec]} \\
\hline 1A & Velocity loop proportional gain & \multicolumn{5}{|l|}{Enables setting of proportional gain of velocity amplifier.} & \multicolumn{3}{|l|}{\begin{tabular}{l}
0 to 10000 \\
[Minimum unit 0.1]
\end{tabular}} \\
\hline 1b & Velocity loop integration gain & \multicolumn{5}{|l|}{Enables setting of integration gain of velocity amplifier.} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [Minimum unit } 0.1]
\end{aligned}
\]} \\
\hline 30 & Run command selection & \multicolumn{5}{|l|}{Run command can be applied through: Digital key pad, input terminal "I1", "I2" or RS485 communication, whichever selected.} & \multicolumn{3}{|l|}{} \\
\hline 31 & Speed command selection & \multicolumn{5}{|l|}{You can choose whether to use "00 Internal speed (0 -th speed)" or analog input terminal for speed command.} & \multicolumn{3}{|l|}{} \\
\hline \multirow{7}{*}{32} & \multirow{7}{*}{Operation mode selection} & \multicolumn{5}{|l|}{Parameter for choosing operation mode} & \multicolumn{3}{|l|}{\multirow[t]{7}{*}{}} \\
\hline & & \multirow[t]{2}{*}{Setting} & \multirow[t]{2}{*}{Operation made} & \multicolumn{3}{|l|}{Function of signal input} & & & \\
\hline & & & & 13 & 14 & 15 & & & \\
\hline & & & 1st speed operation mode & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Free-run stop External forced trip 2nd Acc./Dec. time Trip reset}} & & & \\
\hline & & 3 & 2nd speed operation mode & Speed setting & & & & & \\
\hline & & 4 & 4th speed operation mode & Speed setting & Speed setting & & & & \\
\hline & & B & 8th speed operation mode & Speed setting & Speed setting & \[
\begin{aligned}
& \text { Speed } \\
& \text { setting }
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& 33 \\
& 34 \\
& 35 \\
& 36 \\
& \hline
\end{aligned}
\] & I1/I2 function selection I3 function selection I4 function selection I5 function selection & \multicolumn{5}{|l|}{Signal input functions I1 to I5 can be individually selected.} & \multicolumn{3}{|l|}{Free-run stop External forced trip 2nd Acc./Dec. time Trip reset} \\
\hline 3A & Lower speed limit & \multicolumn{5}{|l|}{When speed command selection is set to analog, set the motor speed at 0 V input.} & \multicolumn{3}{|l|}{\(0 \mathrm{r} / \mathrm{min}\) to Upper speed limit [Minimum unit \(1 \mathrm{r} / \mathrm{min}\)]} \\
\hline 3b & Upper speed limit & \multicolumn{5}{|l|}{Upper limit of motor command speed.} & \multicolumn{3}{|l|}{\(0 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) [Minimum unit \(1 \mathrm{r} / \mathrm{min}\)]} \\
\hline \multirow[t]{2}{*}{3 C} & \multirow[t]{2}{*}{Torque limit} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Set the upper limit of the output torque command. 100 represents the rated torque.}} & \multirow[t]{2}{*}{[Minimum unit} & Rated output (W) & \[
\begin{aligned}
& \hline 50,100, \\
& 200,400 \\
& \hline
\end{aligned}
\] & 750 \\
\hline & & & & & & & Setting range & 0 to 200 & 0 to 180 \\
\hline
\end{tabular}

Specification (For Common specification, see p. 27, p. 28)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{Rated thorque
\((N \cdot m)\)} & \multirow[t]{2}{*}{Starting (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Rated (r/min)} & \multirow[t]{2}{*}{Maximum rotation speed (r/min)} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable & Motor & & Voltage AC (v) & \[
\begin{gathered}
\text { Allowed } \\
\text { range } \\
\text { (\%) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Frequency } \\
(\mathrm{Hzz})
\end{gathered}
\] & Rated input current (A) & & & & \\
\hline 38 mm & MBEK5A1BCV (MBEK5A1BCVC) & \multirow{3}{*}{MBMS5AZBL○} & \multirow{3}{*}{50} & Singe phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & & \multirow{3}{*}{0.16} & \multirow{3}{*}{0.30} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & MBEK5A5BCV & & & \multirow[t]{2}{*}{\(\underset{\substack{\text { Singlephase } \\ \text { 1.phasese }}}{200}\) to 240} & & & Singe phase 0.9 & & & & \\
\hline & (MBEK5A5BCVC) & & & & & & 3-phase 0.5 & & & & \\
\hline
\end{tabular}

\section*{- Permissible shaft load}

\section*{Wiring diagram}

In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter \(\left(2.0 \mathrm{~mm}^{2}\right)\) or more both for main circuit and grounding. Apply grounding class \(\mathrm{D}(100 \Omega\) or below) for grounding. Do not tighten the ground wires
together, but connect them individually. together, but connect them individually.
\(\left.\begin{array}{l}\text { Speed-torque } \\ \text { characteristic }\end{array} \begin{array}{l}\text { Doted line shows a characteristic curve } \\ \text { when supply votage d rops by } 10 \% \text {. }\end{array}\right\rangle\)
\(50 \mathrm{~W} 100 \mathrm{~V} / 200 \mathrm{~V}\)

<D-cut specification>

<Keyway, center tap>

<Round shaft type>

Specification (For Common specification, see p. 27, p. 28)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[b]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[b]{2}{*}{Rated thorque
\((N \cdot m)\)} & \multirow[b]{2}{*}{Starting \((N \cdot m)\)} & \multirow[b]{2}{*}{Rated speed (r/min)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Maximum } \\
& \text { rotation } \\
& \text { speed } \\
& \text { (r/min) }
\end{aligned}
\]} \\
\hline Size & Brushless Amplifier Model number in () is shipped with power connection cable & Motor & & Voltage AC (V) & \[
\begin{array}{|l}
\text { Allowed } \\
\text { range }
\end{array}
\]
\[
\begin{aligned}
\text { range } \\
\text { (\%) }
\end{aligned}
\]
(\%) & \[
\begin{gathered}
\text { Frequency } \\
\text { (Hzz) }
\end{gathered}
\] & Rated input current (A) & & & & \\
\hline 60 mm & MBEK011BCV (MBEK011BCVC) & MBMS011BL & \multirow{3}{*}{100} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & & \multirow{3}{*}{0.32} & \multirow{3}{*}{0.70} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & MBEK015BCV & MBMS012BL & & \multirow[t]{2}{*}{\[
{ }_{13 \text {-phanese }}^{\text {Sine pase }} 200 \text { to } 240
\]} & & & Singe phase 1.3 & & & & \\
\hline & (MBEK015BCVC) & & & & & & 3-phase 0.7 & & & & \\
\hline
\end{tabular}

\section*{- Permissible shaft load}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & \begin{tabular}{c}
Overhung load \\
(W)
\end{tabular} & \begin{tabular}{c}
Thrust load \\
(F)
\end{tabular} \\
\hline \multirow{2}{*}{ Motor shaft } & Output & \multirow{2}{*}{69 N} & 59 N \\
\cline { 2 - 2 } & 100 W & & \\
\hline
\end{tabular}
- Attachment side
- \(\left.\begin{array}{l}\text { Speed-torque } \\ \text { characteristic }\end{array} \begin{array}{c}\text { Doted line shows a characteristic curve } \\ \text { when supply yotage d rops by } \\ 10\end{array}\right\rangle\)

\section*{Motor (dimensions)}

Brushless amplifier (dimensions)

Specification (For Common specification, see p. 27, p. 28)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Rated } \\
& \text { torque } \\
& (\mathrm{N} \cdot \mathrm{~m})
\end{aligned}
\]} & \multirow[t]{2}{*}{Starting \((N \cdot m)\)} & \multirow[t]{2}{*}{Rated (r/min)} & \multirow[t]{2}{*}{} \\
\hline Size & Brushless Amplifier & Motor & & Voltage AC (V) & \[
\begin{gathered}
\begin{array}{c}
\text { Allowed } \\
\text { range } \\
\text { (\%) }
\end{array} \\
\hline
\end{gathered}
\] & Frequency
\[
(H z)
\] & Rated input current (A) & & & & \\
\hline & MBEK021BCV & MBMS021BL & \multirow{3}{*}{200} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & 4.2 & \multirow{3}{*}{0.64} & \multirow{3}{*}{1.4} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & \multirow[t]{2}{*}{MBEK025BCV} & \multirow[t]{2}{*}{MBMS022BL○} & & \multirow[t]{2}{*}{\[
\left.\right|_{13 \text { Binphase }} ^{\substack{\text { Sighese }}} 200 \text { to } 240
\]} & & & Single phase 2.1 & & & & \\
\hline & & & & & & & 3.phase 1.2 & & & & \\
\hline
\end{tabular}
*Suffix of " \(\bigcirc\) " in the motor model No. represents shape of shaft. Refer to the "Check the model number" p. 27. *Starting torque: Representative value
\(\square\) Permissible shaft load
\(\underset{\text { Attachment side }}{L}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & \begin{tabular}{c}
Overhung load \\
(W)
\end{tabular} & \begin{tabular}{c}
Thrust load \\
(F)
\end{tabular} \\
\hline \multirow{2}{*}{ Motor shaft } & Output & \multirow{2}{*}{245 N } & \(98 \mathbf{N}\) \\
\cline { 2 - 2 } & 200 W & & \\
\hline
\end{tabular}

\section*{Motor (dimensions)}

Brushless amplifier (dimensions)

<D-cut specification>

<Keyway, center tap>

<Round shaft type>

\(\square\) Specification (For Common specification, see p. 27, p. 28)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[b]{2}{*}{Rated torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Starting torque \((\mathrm{N} \cdot \mathrm{m})\)} & \multirow[t]{2}{*}{Rated speed (r/min)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Maximum } \\
\text { rotation } \\
\text { speed } \\
(\mathrm{r} / \mathrm{min})
\end{gathered}
\]} \\
\hline Size & Brushless Amplifier & Motor & & Voltage AC (V) & \[
\begin{array}{|c}
\hline \text { Allowed } \\
\text { range }
\end{array}
\]
\[
\begin{aligned}
& \text { range } \\
& \text { (\%) }
\end{aligned}
\]
(\%) & Frequency (Hz) & Rated input current (A) & & & & \\
\hline \[
\begin{gathered}
60 \mathrm{~mm} \\
\mathrm{sq} .
\end{gathered}
\] & MBEK045BCV & MBMS042BL○ & 400 & & \(\pm 10\) & 50/60 & \[
\begin{array}{|c|}
\hline \text { Single phase } 3.8 \\
\hline \text { 3-phase } \\
\hline 2.1 \\
\hline
\end{array}
\] & 1.27 & 3.0 & 3000 & 4000 \\
\hline
\end{tabular}

\section*{- Permissible shaft load}

Wiring diagram

\(\left.\begin{array}{l}\text { Speed-torque } \\ \text { characteristic }\end{array} \begin{array}{l}\text { Dotted ine shows a characteristic curve } \\ \text { when supply voltage drops by } 10 \% \text {. }\end{array}\right\rangle\)

Please refer to P. 95 Support option

\section*{Motor (dimensions)}

<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

Specification (For Common specification, see p. 27, p. 28)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Rated } \\
& \text { torque } \\
& (\mathrm{N} \cdot \mathrm{~m})
\end{aligned}
\]} & \multirow[b]{2}{*}{Starting (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Rated (r/min)} & \multirow[t]{2}{*}{} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable & Motor & & Voltage AC (V) & \[
\begin{gathered}
\text { Allowed } \\
\text { range } \\
\text { (\%) }
\end{gathered}
\] & Frequency (Hz) & Rated input current (A) & & & & \\
\hline \[
\begin{gathered}
80 \mathrm{~mm} \\
\text { sq. }
\end{gathered}
\] & MBEK083BCV & MBMS082BL & 750 & 3-phase 200 to 240 & \(\pm 10\) & 50/60 & 4.0 & 2.4 & 5.2 & 3000 & 4000 \\
\hline
\end{tabular}
\(\square\) Permissible shaft load

Please refer to P. 95 Support option.

\section*{Motor (dimensions)}

<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

- 80 mm square 50 W
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ents} \\
\hline Check the model number & 47 \\
\hline Brushless motor specifications. & 47 \\
\hline Brushless amplifier specifications & 48 \\
\hline System configuration/ System cor & \\
\hline Parameter list of brushless amplif & 51 \\
\hline Example setting of motion pattern & 53 \\
\hline Brushless motors - Details. & 57 \\
\hline Gear head & 63 \\
\hline
\end{tabular}

\section*{Brushless motor specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Item & \multicolumn{5}{|c|}{Specifications} \\
\hline Flange size & 80 mm sq. & \multicolumn{4}{|c|}{90 mm sq.} \\
\hline Motor model No. & MBMU5AZAB & MBMU9A1AB & MBMU9A2AB & MBMU1E1AB & MBMU1E2AB \\
\hline Motor rated output (W) & 50 & \multicolumn{2}{|c|}{90} & \multicolumn{2}{|c|}{130} \\
\hline Voltage (V) & for 100/200 & for 100 & for 200 & for 100 & for 200 \\
\hline Rated torque (\(\mathrm{N} \cdot \mathrm{m}\)) & 0.16 & \multicolumn{2}{|c|}{0.29} & \multicolumn{2}{|c|}{0.41} \\
\hline Starting torque \({ }^{-1}(\mathrm{~N} \cdot \mathrm{~m})\) & 0.24 & \multicolumn{2}{|c|}{0.43} & \multicolumn{2}{|c|}{0.62} \\
\hline Rated input current (A(rms)) & 0.53 & 1.00 & 0.50 & 1.30 & 0.72 \\
\hline Moment of inertia of rotor \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) & 0.12 & \multicolumn{2}{|c|}{0.27} & \multicolumn{2}{|c|}{0.36} \\
\hline Rating & \multicolumn{5}{|c|}{Continuous} \\
\hline Rated rotation speed \({ }^{\prime 2}\) (r/min) & \multicolumn{5}{|c|}{3000} \\
\hline Speed control range (r/min) & \multicolumn{5}{|c|}{30 to 4000} \\
\hline Ambient temperature & \multicolumn{5}{|l|}{\begin{tabular}{l}
\(-10^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) (free from freezing) \\
* Ambient temperature is measured at a distance of 5 cm from the motor.
\end{tabular}} \\
\hline Ambient humidity & \multicolumn{5}{|c|}{\(20 \%\) to \(85 \% \mathrm{RH}\) (free from condensation)} \\
\hline Altitude & \multicolumn{5}{|c|}{Lower than 1000 m} \\
\hline Vibration & \multicolumn{5}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}\) or less \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) (Center of frame)} \\
\hline Motor insulation class & \multicolumn{5}{|c|}{130(B)} \\
\hline Protection structure & \multicolumn{5}{|c|}{IP65 \({ }^{\text {3,4 }}\)} \\
\hline Number of poles & \multicolumn{5}{|c|}{8} \\
\hline Motor mass (kg) & 0.7 & \multicolumn{2}{|c|}{1.0} & \multicolumn{2}{|c|}{1.2} \\
\hline
\end{tabular}

1 Representative value
2 Motor shaft speed: to be multiplied by the reduction ratio when the gear head is used.
\({ }^{*} 3\) Excluding the shaft pass-through section and cable end connector.
4 These motors conform to the test conditions specified in EN standards (EN60529, EN60034-5).
Do not use these motors in application where water proof performance is required such as continuous wash-down operation.

\section*{<Brushless amplifier>}

MBEG
\(\underset{\text { Type }}{\text { MBE }}\)

Motor rated output 5A: 50 W 1E: 130 W
- Function

B: with circuit for regenerative resistor
- Input power supply

1: Single phase AC 100 V to 120 V
5: Single phase/ 3-phase AC200 V to 240 V

- Function 2

Control mode
C: RS485 communication,
Signal input/Sink type (NPN transistor) D: RS485 communication,
Signal input/Source type (PNP transistor) Source type made to order item. Please contact us if you'd like detailed information.

\section*{Brushless amplifier specifications (GP series)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Item} & \multicolumn{7}{|c|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Amplifier model No.} & MBEG5A1BCP & MBEG5A5BCP & MBEG9A1BCP & MBEG9A5BCP & MBEG1E1BCP & \multicolumn{2}{|l|}{MBEG1E5BCP} \\
\hline \multicolumn{2}{|l|}{Applicable Motor} & \multicolumn{2}{|c|}{MBMU5AZAB} & MBMU9A1AB & MBMU9A2AB & MBMU1E1AB & \multicolumn{2}{|l|}{MBMU1E2AB} \\
\hline \multicolumn{2}{|l|}{Motor rated output (W)} & \multicolumn{2}{|c|}{50} & \multicolumn{2}{|r|}{90} & \multicolumn{3}{|c|}{130} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Input power supply voltage
(V)}} & \multirow[t]{2}{*}{Single phase 100 to 120} & \[
\begin{array}{|l|l|}
\hline \text { Single } \\
\text { phase }
\end{array} \text { 3-phase }
\] & \multirow[t]{2}{*}{Single phase 100 to 120} & \[
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { Single } \\
\text { phase }
\end{array} & \text { 3-phase } \\
\hline
\end{array}
\] & \multirow[t]{2}{*}{Single phase 100 to 120} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{l|l|}
\begin{array}{l}
\text { Single } \\
\text { phase }
\end{array} & \text { 3-phase } \\
\hline 200 \text { to } 240
\end{array}
\]}} \\
\hline & & & 200 to 240 & & 200 to 240 & & & \\
\hline \multicolumn{2}{|l|}{Frequency (Hz)} & \multicolumn{7}{|c|}{50/60} \\
\hline \multicolumn{2}{|l|}{Rated input current (A)} & 1.5 & \begin{tabular}{l|l|}
0.7 & 0.35
\end{tabular} & 2.2 & 1.1 0.5 & 2.8 & 1.5 & 0.7 \\
\hline \multicolumn{2}{|l|}{Voltage tolerance} & \multicolumn{7}{|c|}{\(\pm 10\) \%} \\
\hline \multicolumn{2}{|l|}{Control method} & \multicolumn{7}{|c|}{Position control by CS signal, PWM sine wave driving system} \\
\hline \multicolumn{2}{|l|}{Ambient temperature} & \multicolumn{7}{|c|}{\begin{tabular}{l}
\[
0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \text { (free from freezing) }
\] \\
* Ambient temperature is measured at a distance of 5 cm from the amplifier.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Ambient humidity} & \multicolumn{7}{|c|}{\(20 \%\) to \(85 \%\) RH (free from condensation)} \\
\hline \multicolumn{2}{|l|}{Location} & \multicolumn{7}{|c|}{Indoor (No corrosive gas, A place without garbage, and dust)} \\
\hline \multicolumn{2}{|l|}{Altitude} & \multicolumn{7}{|c|}{Lower than 1000 m} \\
\hline \multicolumn{2}{|l|}{Vibration} & \multicolumn{7}{|c|}{\(5.9 \mathrm{~m} / \mathrm{s}^{2}\) or less (10 Hz to 60 Hz)} \\
\hline \multicolumn{2}{|l|}{Protection structur/ Cooling system} & \multicolumn{7}{|c|}{Equivalent to IP20/ Self cooling} \\
\hline \multicolumn{2}{|l|}{Storage temperature} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Normal temperature \\
* Temperature which is acceptable for a short time, such as during transportation is \(-20^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) (free from freezing)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Storage humidity} & \multicolumn{7}{|c|}{Normal humidity} \\
\hline \multicolumn{2}{|l|}{Number of positioning points} & \multicolumn{7}{|l|}{4 points
(Travel distance, speed, acceleration time, deceleration time, and relative/absolute can be set per point)} \\
\hline \multicolumn{2}{|l|}{Positioning resolution} & \multicolumn{7}{|c|}{288 pulse/rotation (Accuracy: Within \(\pm 5^{\circ}\) at \(20^{\circ} \mathrm{C}\) at no load)} \\
\hline \multicolumn{2}{|l|}{Signal input} & \multicolumn{7}{|c|}{4 inputs} \\
\hline \multicolumn{2}{|l|}{Signal output} & \multicolumn{7}{|c|}{2 outputs (Open collector)} \\
\hline \multirow[t]{2}{*}{Communication function} & RS485 & \multicolumn{7}{|c|}{Max 31 units. Setting of parameter, monitoring of control condition. Communication speed: Choose from 2400 bps/ 4800 bps/ 9600 bps} \\
\hline & RS232 & \multicolumn{7}{|c|}{Setting of parameter and monitoring of control condition are enabled with commercial PC. \({ }^{1}\)} \\
\hline \multicolumn{2}{|l|}{Digital key pad} & \multicolumn{7}{|l|}{Parameter change, status monitor, etc. can be executed through the optional Digital key pad DVOP3510. \({ }^{2}\)} \\
\hline \multicolumn{2}{|l|}{Protective function} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Warning : Overload warning, Setting change warning \\
Protect : Overload, Overcurrent, Overvoltage, Undervoltage, System error, Over-speed, Sensor error, Overheat, Position error, External forced trip, Position error counter overflow, RS485 communication error, Operation execution error, Homing error, present position overflow, Hardware limit error, Digital key pad communication trouble, user parameter error, and system parameter error
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Regenerating brake} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Regenerative braking resistor can be externally connected. \({ }^{\text {3 }}\) \\
Instantaneous braking torque \(200 \%\), Continuous regenerative ability of external regenerative resistor: 10 W (Regenerative operation with which motor shaft is rotated by load, e.g. load lowering operation, should not be continued.)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Protection level} & \multicolumn{7}{|c|}{Protection level: torque command 115 (inverse time characteristics)} \\
\hline \multicolumn{2}{|l|}{Amplifier mass (kg)} & \multicolumn{7}{|c|}{0.37} \\
\hline
\end{tabular} Amplifier mass (kg)
PANATERM for BL (Download from our web site.), PC connection cable (DV)
is required. If your PC does not have R232 port, use RS232-USB converter.
\(* 2\) Digital key pad connection cable (DVOP383*0) is required. * 3 Use optional external regenerative resistor (sold separately).

\section*{System configuration}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\[
\begin{aligned}
& \text { Power } \\
& \text { supply }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Rated } \\
& \text { Rotation } \\
& \text { rotaed } \\
& \text { (rlmin) }
\end{aligned}
\]} & \multirow{3}{*}{output (W)} & \multirow{3}{*}{Motor} & \multirow{3}{*}{Gear head} & \multirow{3}{*}{Brushless amplifier} & \multirow[t]{2}{*}{Brushless amplifie \(\binom{\) supplied with }{ power cable } (Note 2)} & \multicolumn{4}{|c|}{Optional parts} \\
\hline & & & & & & & \(\begin{gathered}\text { External } \\ \text { regenerative } \\ \text { resistor }\end{gathered}\) & Noise filter & Surge absorber & Reactor \\
\hline & & & & & & Reference page p. 74 & p. 71 & p. 67 & p. 67 & p. 73 \\
\hline \multirow{3}{*}{Single phase 100 V} & \multirow{6}{*}{3000} & 50 & mbmusazab & MB8G \(\square\) bV & MBEG5A1BCP & MBEG5A1BCPC & \multirow{3}{*}{for 100 V DVOP2890} & \multirow{3}{*}{for single phase power supply DV0P4170} & \multirow{3}{*}{for single phase
power supply DV0P4190} & \multirow{3}{*}{\[
\begin{array}{|l|l|}
\text { for single phase } \\
\text { power suppply } \\
\text { חvop? }
\end{array}
\]
DVOP227} \\
\hline & & 90 & MBMU9A1AB & MB9G \(\square\) BV & MBEG9A1BCP & MBEG9A1BCPC & & & & \\
\hline & & 130 & mbmu1E1AB & MB9G \(\square\) bv & MBEG1E1BCP & MBEG1E1BCPC & & & & \\
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Single/ } \\
\text { 3-phase } \\
2000
\end{gathered}
\]} & & 50 & mbmu5Azab & MB8G \(\square \mathrm{Bv}\) & MBEG5A5BCP & MBEG5A5BCPC & \multirow{3}{*}{for 200 V DVOPM20068} & \multirow[t]{3}{*}{for single phase power supply DVOP4170 for 3-phase power supply
DVOPM20042} & \multirow[t]{3}{*}{for single phase DVOP4190 for 3-phase DVOP1450} & \multirow[t]{3}{*}{\begin{tabular}{c}
for single phase \\
power supply \\
DVOP22 \\
for 3-phase \\
power supply \\
DVOP220 \\
\hline
\end{tabular}} \\
\hline & & 90 & mbmu9arab & MB9G \(\square\) bv & MBEG9A5BCP & MBEG9A5BCPC & & & & \\
\hline & & 130 & MBMU1E2AB & MB9G \(\square\) BV & MBEG1E5BCP & MBEG1E5BCPC & & & & \\
\hline
\end{tabular}
ting reduction ratio in \(\square\)
(Note 2) Refer to p. 74 for a power supply connecting cable.
This part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.
The supplied power connecting cable is for single-phase input, when supplying three-phase power; please make a cable using optional power connection kit (DVOP2870)
* When installing the reactor, refer to p .73 .

\section*{* Be sure to use a set of matched components (series, power source, capacity, output, etc.)}
* This motor is not provided with a holding brake. If it is used to drive a vertical shaft, the movable section may fall down by its own weight as power is turned off.

\section*{Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Optional parts} & Parts number & \[
\begin{aligned}
& \text { Reference } \\
& \text { page }
\end{aligned}
\] & Optional parts & & Parts number & \[
\begin{aligned}
& \text { References } \\
& \text { page }
\end{aligned}
\] \\
\hline \multirow{4}{*}{Motor extension cable} & 1 m & DV0PQ1000110 & \multirow{4}{*}{P. 69} & Control signal cable & 2 m & DV0PM20076 & P. 70 \\
\hline & 3 m & DV0PQ1000130 & & \multicolumn{2}{|l|}{1/O connector kit} & DVOPM20070 & P. 71 \\
\hline & 5 m & DV0PQ1000150 & & PC connection cable \({ }^{-2}\) & 1.5 m & DV0P4140 & P. 70 \\
\hline & 10 m & DV0PQ10001A1 & & \multicolumn{2}{|l|}{Noise filter for signal line} & DVOP1460 & P. 67 \\
\hline \multicolumn{2}{|l|}{Power supply connector kit} & DVOP2870 & P. 70 & \multicolumn{2}{|l|}{DIN rail mounting unit} & DV0P3811 & P. 72 \\
\hline \multicolumn{2}{|l|}{Digital key pad \({ }^{1}\)} & DVOP3510 & P. 68 & & & & \\
\hline \multirow[t]{2}{*}{Digital key pad connection cable} & 1 m & DVOP38310 & \multirow[b]{2}{*}{P. 68} & & & & \\
\hline & 3 m & DVOP38330 & & & & & \\
\hline
\end{tabular}
* For details of cable, refer to \(p .68\) to \(p .70\).

1 When using Digital key pad, the Digital key pad connection cable (DVOP383*0) is required.
*2 When connecting PC, the PC connection cable (DVOP4140) and the Digital key pad connection cable (DV0P383*0) are required

\section*{Wiring equipment}

Selection of circuit breaker (MCCB), magnetic contactor and electric wire. (To check conformity with international standards, refer to p .93 Conformity with international safety standards.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Voltage} & \multirow[b]{2}{*}{Power capacity} & \multirow[t]{2}{*}{MCCB
Rated current} & \multirow[t]{2}{*}{Magnetic contactor Rated Current (Contact composition)} & \multicolumn{2}{|l|}{Core of electric wire (\(\mathrm{mm}^{2}\))} \\
\hline & & & & Main circuit, Grounding & Control circuit \\
\hline Single phase 100 V & \multirow[b]{2}{*}{50 W to 130 W} & \multirow[b]{2}{*}{5 A} & \multirow[t]{2}{*}{\[
\begin{gathered}
20 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \multirow[b]{2}{*}{0.5 (AWG20)} & \multirow[b]{2}{*}{0.13 (AWG26)} \\
\hline \[
\begin{gathered}
\text { Single phase } 200 \mathrm{~V} \\
\hline \text { 3-phase } 200 \mathrm{~V} \\
\hline
\end{gathered}
\] & & & & & \\
\hline
\end{tabular}

■ Be sure to connect the earth terminal to ground.
In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter (\(2.0 \mathrm{~mm}^{2}\)) or more both for main circuit and grounding. Apply grounding class D (\(100 \Omega\) or below) for grounding.
- Selection of relay

A relay used in a control circuit, e.g. at the control input terminal should be small signal relay (Min. guaranteed current 1 mA or less) or positive contact.
<Example> Panasonic: DS type, HC type OMRON: G2A type
- Selection of control circuit switch
hen using a switch in place of relay, select a switch rated at minute electric current, to assure positive contact.
<Example> Nihon Kaiheiki Ind.: M-2012J-G
The wiring of SER and I/O connector
The wiring of SER and I/O connector should separate from power line to prevent malfunction
- Wiring to the I/O connector

Permissible length for control signal cable is 5 m or less.

\section*{System configuration diagram}

\section*{Example of digital setting}

\section*{(Digital key pad)}
- Various key operation, Homing, Teaching

Digital Monitor [Rotation speed, Present position, Internal DC Voltage, Load factor,
Torque, Trip history, Overload warning (flashing)]
Set/change parameters

Customer preparation)

* Please refer to the operation manual overall on how to operate the teaching

Please download the operation manual from our web site below.
http://industrial.panasonic.com/ww/products/motors-compressors/fa-motors

\section*{Parameter list of brushless amplifier}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Parameter name} & Explanation & Setting range \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{The 1st target position (rotation number) The 1st target position (Pulse)}} & \multirow[t]{2}{*}{You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)} & -16384 to 16383 \\
\hline & & & -288 to 288 \\
\hline \multirow{6}{*}{} & The 1st coordinate setting & You can select positioning system to the 1st point. 0 : Relative travel, 1: Absolute travel & 0, 1 \\
\hline & The 1st setting speed (r/min) & You can set the speed moving to the 1st point. & 0 to 4000 \\
\hline & The 1st acceleration time (ms) & You can set time taken for reaching the 1st setting speed. & 1 to 30000 \\
\hline & The 1st deceleration time (ms) & You can set time taken from the 1st setting speed to stop. & 1 to 30000 \\
\hline & The 1st block setting & \begin{tabular}{l}
0 : Normal operation \\
1: Continuous block operation (1st point \(\rightarrow 2\) nd point) \\
2: Combined block operation (1st point + 2nd point)
\end{tabular} & 0 to 2 \\
\hline & The 1st block timer setting (ms) & Start commanding of 2nd point after this setting time elapses and command of 1 st point is completed. & 0 to \\
\hline \multirow{8}{*}{} & The 2nd target position (rotation number) & \multirow[t]{2}{*}{You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)} & -16384 to 16383 \\
\hline & The 2nd target position (pulse) & & -288 to 288 \\
\hline & The 2nd coordinate setting & You can select positioning system to the 2nd point. 0 : Relative travel, 1: Absolute travel & 0, 1 \\
\hline & The 2nd setting speed & You can set the speed moving to the 2nd point. & 0 \\
\hline & The 2nd acceleration time (ms) & You can set time taken for reaching the 2nd settiod & to 300 \\
\hline & The 2nd deceleration time (ms) & You can set time taken from the 2nd setting speed to stop. & to 30000 \\
\hline & The 2nd block setting & 0 : Normal operation, 1: Continuous block operation (2nd point \(\rightarrow\) 3rd point) & 0, 1 \\
\hline & The 2nd block timer setting (ms) & Start commanding of 3rd point after this setting time elapses and command of 2nd point is completed. & 0 to 30000 \\
\hline \multirow{8}{*}{} & The 3rd target position (rotation number) & \multirow[t]{2}{*}{You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)} & -16384 to 1 \\
\hline & The 3rd target position (Pulse) & & -288 to 288 \\
\hline & The 3rd coordinate setting & You can select positioning system to the 3rd point. 0: Relative travel, 1: Absolute travel & 0, 1 \\
\hline & The 3rd setting speed (r/min) & You can set the speed moving to the 3rd point. & 0 to 4000 \\
\hline & The 3rd acceleration time (ms) & You can set time taken for reaching the 3rd setting speed. & 1 to 30000 \\
\hline & The 3rd deceleration time (ms) & You can set time taken from the 3rd setting speed to stop. & 1 to 30000 \\
\hline & The 3rd block setting & 0 : Normal operation, 1: Continuous block operation (3rd point \(\rightarrow 4\) th point) 2: Combined block operation (3rd point +4 th point) & 0 to 2 \\
\hline & The 3rd block timer setting (ms) & Start commanding of 4th point after this setting time elapses and command of 3rd point is completed. & 0 to 30000 \\
\hline \multirow{7}{*}{} & The 4th target position (rotation number) The 4th target position (Pulse) & You can set travel distance in rotation numbers and pulses. (288 pulses per rotation) & \[
\begin{array}{|l|l|}
\hline-16384 \text { to } 16383 \\
\hline-288 \text { to } 288 \\
\hline
\end{array}
\] \\
\hline & The 4th coordinate setting & You can select positioning system to the 4th point. 0 : Relative travel, 1: Absolute travel & 0, 1 \\
\hline & The 4th setting speed (r/min) & You can set the speed moving to the 4th point. & 0 to 4000 \\
\hline & The 4th acceleration time (ms) & You can set time taken for reaching the 4th setting speed. & 1 to 30000 \\
\hline & The 4th deceleration time (ms) & You can set time taken from the 4th setting speed to stop. & 1 to 30000 \\
\hline & The 4th block setting & 0 : Normal operation, 1: Continuous block operation (4th point \(\rightarrow\) 1st point) & 0, 1 \\
\hline & The 4th block timer setting (ms) & Start commanding of 1st point after this setting time elapses and command of 4th point is completed. & 0 to 30000 \\
\hline \multicolumn{2}{|l|}{Acceleration mode} & You can select running pattern in acceleration. & 0, 1 \\
\hline \multicolumn{2}{|l|}{Deceleration mode} & You can select running pattern in deceleration. & 0, 1 \\
\hline \multicolumn{2}{|l|}{Sequential run maximum point number} & You can set the maximum point number for positioning by use of sequential run signal. & 1 to 4 \\
\hline \multicolumn{2}{|l|}{Coordinate system setting} & \(0:\) CCW rotation in + direction, 1: CW rotation in + dir & 0, 1 \\
\hline \multicolumn{2}{|l|}{Position loop gain (the 1st gain)} & You can determine the response of position control & 0 to 100 \\
\hline \multicolumn{2}{|l|}{Velocity loop gain (the 1st gain)} & You can determine the response of velocity loop. & 0 to 10000 \\
\hline \multicolumn{2}{|l|}{Velocity loop integration gain (the 1st gain)} & You can determine the rigidity of velocity loop. & 0 to 10000 \\
\hline \multicolumn{2}{|l|}{Velocity feed forward gain (the 1st gain) (\%)} & This is the function to forward (add) position command to speed command & 0 to 100 \\
\hline \multicolumn{2}{|l|}{Speed detection filter (the 1st gain)} & You can set the time constant of low-pass filter of speed feedback. & 5 to 20 \\
\hline \multicolumn{2}{|l|}{Velocity feed forward-timeconstant (ms)
(Common to the 1st/2nd gain)} & This is a filter in velocity feed forward section. & 0 to 500 \\
\hline \multicolumn{2}{|l|}{Torque limit setting (the 1st gain)} & Output torque of motor is limited. & 50 to 150 \\
\hline \multicolumn{2}{|l|}{Torque filter-timeconstant (Common to the 1st/2nd gain)} & You can set the time constant of primary delay filter of torque instruction. & 0 to 500 \\
\hline \multicolumn{2}{|l|}{The 2nd position loop gain (the 2nd gain)} & You can determine the response of position control. & 0 to 100 \\
\hline \multicolumn{2}{|l|}{The 2nd velocity loop gain (the 2nd gain)} & You can determine the response of velocity loop. & 0 to 10000 \\
\hline \multicolumn{2}{|l|}{The 2nd velocity loop integration gain (the 2nd gain)} & You can determine the rigidity of velocity loop. & o to 10000 \\
\hline \multicolumn{2}{|l|}{The 2nd velocity feed forward gain (\%)
(the 2nd gain)} & Set it at 0 in normal use. This is the function to forward (add) position command to speed command during on the 2nd gain. & 0 to 100 \\
\hline \multicolumn{2}{|l|}{The 2nd speed detection filter (the 2nd gain)} & Use the default setting normally. You can set the time constant of low-pass filter in speed feedback. & 5 to \\
\hline \multicolumn{2}{|l|}{The 2nd torque limit setting (the 2nd gain) (\%)} & Output torque of the motor is limited. & 50 to 150 \\
\hline \multicolumn{2}{|l|}{Gain switching mode selection} & \begin{tabular}{l}
0 : Fixed at the 1st gain, 1: Fixed at the 2nd gain \\
2: Automatic switching (In running = the 2nd gain, In standstill = the 1st gain)
\end{tabular} & 0 to 2 \\
\hline & Gain switching time (ms) & When the gain switching mode is set to automatic switching, after the output of instruction, the 2nd gain (in running) changes to the 1st gain (in standstill) when time setting has elapsed. & 0 to 10000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Parameter name & Explanation & Setting range \\
\hline 38 & In-position range & In-position signal is turned on when position error (difference between command position and actual position) is below setting. & 0 to 16383 \\
\hline 39 & Po & Abnormal detect when deviation value exceeds the set value \(\times 8\). & 16383 \\
\hline 3A & Position error invalidation & 0: Effective, 1: Ineffective (Motor does not trip but keeps on operating.) & 0, 1 \\
\hline 3E & Run-command selection & You can select the run-command. 0: //O, 1: RS485 & 0, 1 \\
\hline 40 & Homing mode & Select homing method. & 0 to 5 \\
\hline 41 & Homing direction & You can set the detection direction of home. & 0, 1 \\
\hline 42 & Homing speed (r/min) & You can set the speed in homing action. & 0 to 4000 \\
\hline 43 & Homing limit & Sets the limit of the amount of movement during homing. Homing error detect if travel distance has exceeded this setting. & to 16383 \\
\hline 44 & Homing acceleration/deceleration time (ms) & You can set time taken for reaching the homing speed. & 1 to 30000 \\
\hline 45 & Bumping torque detection value (\%) & You can limit the output torque of motor when returning to bumping home. & 50 to 150 \\
\hline 46 & Bumping detection time (ms) & You can set the detection time of bumping toque in returning to bumping home. & 0 to 15000 \\
\hline 47 & Home offset (pulse) & You can set the offset from home detection position. & -16384 to 16 \\
\hline 48 & Homing function & \begin{tabular}{l}
0 : Required, 1: Not required (Position when power is turned on is the home.) \\
2: When homing is not completed yet, homing operation is executed by positioning start signal.
\end{tabular} & 0 to 2 \\
\hline 49 & Homing selection when motor is free & \begin{tabular}{l}
0 : When homing is unavailable after motor free state is reset (when trip occurs, after trip is reset), positioning operation is enabled. \\
1: When motor is free (trip occurs), homing is required again.
\end{tabular} & 0,1 \\
\hline 4A & Present position overflow permission & \begin{tabular}{l}
You can set operation when the present position counter of motor has overflowed (exceeded \(\pm 32767\) rotations). \\
0 : Prohibited (motor trip), 1: Permitted (no motor trip)
\end{tabular} & 0, 1 \\
\hline 4b & Jog speed (r/min) & You can set the operation speed in jog operation. & 0 to 4000 \\
\hline 4 C & Jog acceleration time (ms) & You can set time taken for reaching jog speed. & 1 to 30000 \\
\hline 4d & Jog deceleration time (ms) & You can set time taken from jog speed until stopping. & 1 to 30000 \\
\hline 4E & Teaching speed (r/min) & You can set speed used in applying teaching function of Digital key pad. & o 400 \\
\hline 50 & I1 function selection & \multirow[t]{4}{*}{\begin{tabular}{l}
You can assign functions to I1 through I4. \\
0 : Forced trip, 1: Instantaneous stop, 2: Deceleration stop \\
3: Homing start, 4: Forward jog, 5: Reverse jog, 6: Point designation 1 \\
7: Point designation 2, 8: Run start, 9: Sequential run start \\
10: Trip reset, 11: Home sensor, 12: Limit in + direction \\
13: Limit in - direction, 14: Direction switching, 15: Motor-free
\end{tabular}} & \multirow{4}{*}{0 to} \\
\hline 51 & 12 function selection & & \\
\hline 52 & 13 function selection & & \\
\hline 53 & I4 function selection & & \\
\hline 54 & I1 Input logic selection & \multirow[t]{4}{*}{0 : Normal logic (Input is effective (ON) when connected to GND.) 1: Reverse rotation logic (Input is effective (ON) when OPEN (open)) Set the reverse rotation logic to the input desired to be operated on wiring break side such as forced trip (emergency stop input).} & \multirow{4}{*}{0,1} \\
\hline 55 & 12 Input logic selection & & \\
\hline 56 & 13 Input logic selection & & \\
\hline 57 & 14 Input logic selection & & \\
\hline 58 & Trip reset function enable & 0 : Disable, 1: Enable (Operation start signal longer than 1 second enables execution of trip reset.) & 0, 1 \\
\hline 59 & Deceleration time in instantaneous stop (ms) & Set the deceleration time in executing instantaneous stop. & 3000 \\
\hline 5 C & O1 function selection & \multirow[t]{2}{*}{\begin{tabular}{l}
You can assign functions to O 1 and O 2 . \\
0 : Trip output, 1: In-position, 2: In-motion signal (BUSY) \\
3: Homing completion, 4: Overload detection, 5: Torque under restriction
\end{tabular}} & \multirow[b]{2}{*}{0 to 5} \\
\hline 5d & O2 function selection & & \\
\hline 5 E & 01 output polarity selection & \multirow[t]{2}{*}{0 : Normal logic (Output transistor ON at enabled, OFF at disabled) 1: Reversed logic (Output transistor OFF at enabled, ON at disabled) When only trip output is normal logic, output transistor is off in tripping, and output transistor is on in no tripping.} & \multirow[b]{2}{*}{0,1} \\
\hline 5 F & O2 output polarity selection & & \\
\hline 60 & RS485 device number & Set the device number of amplifier in communication (Amplifier ID). & \[
\begin{aligned}
& 128 \text { to } 159 \\
& \text { (80h to } 9 F h \text {) }
\end{aligned}
\] \\
\hline 61 & RS485 communication speed & Set the communication speed of RS485 communication. & 0 to 2 \\
\hline 62 & RS485 communication standard & Set the communication standard of RS485 communication. & to 11 \\
\hline 63 & RS485 communication response time & Communication response time is the shortest time for setting transmission mode in RS485 bus for response after the amplifier has received communication data. & 10 to 100 \\
\hline 64 & RS485 retry times of communication & Set the retry times of RS485 communication. & 0 to \\
\hline 65 & RS485 protocol timeout (seconds) & Protocol timeout is the time allowed from reception of a character code to reception of the next one in communication. & 255 \\
\hline 6A & Trip history clear & When "(yes)" is set, trip history (Pr6b to 6F) is cleared. & 0(No), 1 (Yes) \\
\hline 6b & Trip history 1 & Display the latest trip. & - \\
\hline 6 C & Trip history 2 & Display the 2nd latest trip. & - \\
\hline 6d & Trip history 3 & Display the 3rd latest trip. & - \\
\hline 6 E & Trip history 4 & Display the 4th latest trip. & - \\
\hline 6 F & Trip history 5 & Display the 5th latest trip. & - \\
\hline 77 & Parameter copy function & This function is only available with use of the Digital key pad. & No/P.INIT/ P.LOAD/P.PROG \\
\hline 7A & Monitor mode switching & You can choose monitor screen to be displayed first when the Digital key pad is connected. & 0 to 6 \\
\hline 7 b & Numerator of command pulse ratio & \multirow[t]{2}{*}{You can set the division multiplier ratio of travel distance.} & \multirow[t]{2}{*}{1 to 20000} \\
\hline 7 C & Denominator of command pulse ratio & & \\
\hline 7 F & For manufacturer use & It cannot be changed. & - \\
\hline
\end{tabular}

\section*{Indexing (feeding by fixed length)}

\section*{When feeding by fixed length of travel}

\section*{<Example of setting>}
- Every time I1 is turned on, the motor runs for fixed travel distance.
Homing operation is executed and the home is set when I1 is turned on just once after power-on. (It is also possible to set power-on position to the home.)

\section*{Signal function setting]} \begin{tabular}{|c|c|c|}
\(\substack{\text { Terminal } \\
\text { symborminal } \\
\text { syumber }}\) & \(\begin{array}{c}\text { Terminal } \\
\text { name }\end{array}\) \\
\hline
\end{tabular}

\section*{\begin{tabular}{l|l|l}
\hline I1 & 1 & Signal input 1
\end{tabular}}

Description of function perates when "I1" and "GND" Operates (Homing operation for the
shorted first time after power-on) CW operation when "I2" and "GND" are shorted, CCW operation when hey are opened (including homing Motor trips when are open.
Home detected when "14" and "GND" are shorted.
Trip output (Normally on, and off in
tripping) tipping)
\(2 \begin{aligned} & \text { In motion si } \\ & \text { operation) }\end{aligned}\)
[Operation timing chart]

\section*{[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)}
\begin{tabular}{|c|c|c|c|c|}
\hline Function & Parameter (\(\mathrm{Nr} \square \square\)) & Name of parameter & Setting & Remarks \\
\hline \multirow{7}{*}{} & \(50^{*}\) & I1 function selection & 8 & Run start (used only for the 1st point) \\
\hline & \(51^{*}\) & I2 function selection & 14 & Direction switching input \\
\hline & \(52^{*}\) & 13 function selection & 0 & Forced trip input \\
\hline & \(53^{*}\) & 14 function selection & 11 & Home sensor input \\
\hline & \(56^{*}\) & 13 input logic selection & 1 & Changes the polarity of 3 to effective when open (forced trip in this case). \\
\hline & 5 C & 01 function selection & 0 & Trip output \\
\hline & 5 d & 02 function selection & 2 & In-motion signal \\
\hline \multirow{7}{*}{} & 40 & Homing mode & 0, 1, 5 & Set homing in which to use home sensor. \\
\hline & 41 & Homing direction & 0, 1 & Set any desired homing direction. \\
\hline & 42 & Homing speed & 200 & Set any desired operation speed. \\
\hline & 44 & Homing acceleration/deceleration time & 200 & Set any desired acceleration/deceleration time. \\
\hline & 48* & Homing function & 2 & Set to 1 when setting power-on position to the home. \\
\hline & 49 & Selecting homing when motor is free & 1 & Set to 1 (homing is required again when tripping occurs.) \\
\hline & 4A & Present position overflow permission & 1 & Set to 1 (permits overflow). \\
\hline \multirow{6}{*}{} & 00 & The 1st target position (rotation number) & 10 & \multirow[t]{2}{*}{\begin{tabular}{l}
Set the travel distance by rotation number and pulse (one rotation per 288 pulses). \\
When the setting does not represent proper mechanical reduction gear ratio, accumulated error occurs, which results in dislocation.
\end{tabular}} \\
\hline & 01 & The 1st target position (pulse) & 0 & \\
\hline & 02 & The 1st coordinate setting & 0 & Set relative travel. \\
\hline & 03 & The 1st setting speed & 2000 & Set any desired operation speed. \\
\hline & 04, 05 & The 1st acceleration time/ The 1st deceleration time & 200 & Set any desired acceleration time and deceleration time. \\
\hline & 06 & The 1st block setting & 0 & Set normal operation. \\
\hline
\end{tabular}

\section*{<Information>}

In this setting, I 3 is set to forced trip when open. Connect an emergency stop switch or the like which is shorted but open at error ol 13 terminal.
Please note that the motor will not run due to forced trip without such connection.

\section*{Reciprocating}

\section*{-When executing reciprocating run between fixed position}

[Signal function setting]
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Terminal Terminal } \\
& \text { symbol } \\
& \text { number }
\end{aligned}
\]} & Terminal name & Description of function \\
\hline I1 & 1 & Signal input 1 & Operates when "I1" and "GND" are shorted (Homing operation for the first time after power-on) \\
\hline 12 & 2 & Signal input 2 & Home detected when "12" and "GND" are shorted. \\
\hline I3 & 11 & Signal input 3 & Operation stops when "I3" and "GND" are shorted. \\
\hline I4 & 4 & Signal input 4 & Motor trips when "I4" and "GND" are open. \\
\hline 01 & 6 & Signal output 1 & Trip output (Normally on, and off in tripping) \\
\hline 02 & 12 & Signal output 2 & In motion signal (including homing operation) \\
\hline
\end{tabular}

\section*{<Example of setting>}

Every time I1 is turned on, feed action \(\rightarrow\) return action \(\rightarrow\) feed action is repeated in turn. -When power is on, homing operation is executed and home is set by I1.

Coordinate system + direction depends on configuration of gear head and machine. When setting the rotation direction CCW of motor shaft to + , set Pr23 at "0", and when
setting CW to + set Pr23 at "1"
[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)
\begin{tabular}{|c|c|c|c|c|}
\hline Function & \[
\begin{gathered}
\text { Parameter } \\
\text { No. } \\
\text { (Pr } \square)
\end{gathered}
\] & Name of parameter & Setting & Remarks \\
\hline \multirow[b]{7}{*}{} & \(50^{*}\) & I1 function selection & 9 & Sequential run start \\
\hline & \(51^{*}\) & I2 function selection & 11 & Home sensor input \\
\hline & 52* & 13 function selection & 1 & Instantaneous stop input \\
\hline & \(53^{*}\) & 14 function selection & 0 & Forced trip input \\
\hline & 57* & 14 input logic selection & 1 & Changes the polarity of I4 to effective when open (forced trip in this case). \\
\hline & 5 C & 01 function selection & 0 & Trip output \\
\hline & 5d & 02 function selection & 2 & In-motion signal \\
\hline \multirow{8}{*}{} & 40 & Homing mode & 0 & Set homing in which to use home sensor. \\
\hline & 41 & Homing direction & 1 & Set the homing direction normally to minus direction (return direction). \\
\hline & 42 & Homing speed & 200 & Set any desired operation speed. \\
\hline & 44 & Homing acceleration deceleration time & 200 & Set any desired acceleration/deceleration time. \\
\hline & \(48^{*}\) & Homing function & 2 & Homing operation by initial I1 input when power is turned on. \\
\hline & 49 & Selecting homing when motor is free & 0 & Homing is not required when tripping occurs. \\
\hline & 4A & Present position overflow permission & 0 & Overflow is not permitted because absolute travel is set. \\
\hline & \(23^{*}\) & Coordinate system setting & 0, 1 & Set so that homing is in minus direction. \\
\hline \multirow{6}{*}{} & 00 & The 1st target position (rotation number) & 10 & \\
\hline & 01 & The 1st target position (pulse) & & Set the feed position coordinates. \\
\hline & 02 & The 1st coordinate setting & 1 & Set absolute travel. \\
\hline & 03 & The 1st setting speed & 2000 & Set any desired travel. \\
\hline & 04, 05 & The 1st acceleration time/ The 1st deceleration time & 200 & Set any desired acceleration time and deceleration time. \\
\hline & 06 & The 1st block setting & 0 & Set normal operation. \\
\hline \multirow{6}{*}{} & 08 & The 2nd target position (rotation number) & 2 & Set the return position coordinate. \\
\hline & 09 & The 2nd target position (pulse) & 0 & (Set 0 when the position is the same as home.) \\
\hline & OA & The 2nd coordinate setting & 1 & Set absolute travel. \\
\hline & 0b & The 2nd setting speed & 2000 & Set any desired travel. \\
\hline & OC, Od & The 2nd acceleration time/ The 2nd deceleration time & 200 & Set any desired acceleration time and deceleration time. \\
\hline & OE & The 2nd block setting & 0 & Set normal operation. \\
\hline \[
\begin{aligned}
& \stackrel{\stackrel{\rightharpoonup}{7}}{\frac{\stackrel{\rightharpoonup}{\omega}}{\omega}}
\end{aligned}
\] & 22 & Sequential run Maximum point number & 2 & Restricts the maximum point number in sequential operation. When this parameter is set to 2 , whenever I1 is turned on, system operates in turn from the 1st point \(\rightarrow\) the 2nd point \(\rightarrow\) the 1st point ... \\
\hline
\end{tabular}

\section*{Automatic reciprocating}

\section*{When executing fixed reciprocating sequence operation with single run start signal}

\section*{<Example of setting>}

When 11 is turned on, the unit moves to target position (feed position), waits for a specified time, and returns to original position (return position).
When power is on, homing operation is executed and home is set by I1.

Signal function setting]
\begin{tabular}{c|c|c|}
\hline \begin{tabular}{c}
Terminal \\
symbol \\
Terminal \\
number
\end{tabular} & \begin{tabular}{c}
Terminal \\
name
\end{tabular} \\
\hline I1 & 1 & Signal input 1
\end{tabular}

Description of function Operates when "II" and "GND" are shorted (Homing operation for the
first time after power-on) Home detected when "I2" and "GND" are shorted. Operation stops when "I3" and
"GND" are shorted (GND" are shorted. (Motor does not perate during short-circuit.)
Motor trips when "14" and "GND"
are open.
Trip output (Normally on, and off in tripping)
motion
In motion
operation)
[Operation timing chart]

[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting)
\begin{tabular}{|c|c|c|c|c|}
\hline Function & \[
\begin{gathered}
\text { Parameter } \\
\text { No. } \\
\text { (Pr }
\end{gathered}
\] & Name of parameter & Setting & Remarks \\
\hline \multirow{7}{*}{} & \(50^{*}\) & I1 function selection & 8 & Run start \\
\hline & \(51^{*}\) & I2 function selection & 11 & Home sensor input \\
\hline & 52* & I3 function selection & 1 & Instantaneous stop input \\
\hline & \(53^{*}\) & I4 function selection & 0 & Forced trip input \\
\hline & \(57^{*}\) & 14 input logic selection & 1 & Changes the polarity of 14 to effective when open (forced trip in this case). \\
\hline & 5 C & 01 function selection & 0 & Trip output \\
\hline & 5d & 02 function selection & 2 & In-motion signal \\
\hline \multirow{8}{*}{} & 40 & Homing mode & 0 & Set homing in which to use home sensor. \\
\hline & 41 & Homing direction & 1 & Set the homing direction normally to minus direction (return direction). \\
\hline & 42 & Homing speed & 200 & Set any desired operation speed. \\
\hline & 44 & Homing acceleration/deceleration time & 200 & Set any desired acceleration/deceleration time. \\
\hline & \(48^{*}\) & Homing function & 2 & Homing operation by initial I1 input when power is turned on. \\
\hline & 49 & Selecting homing when motor is free & 0 & Homing is not required when tripping occurs. \\
\hline & 4A & Present position overflow permission & 0 & Overflow is not permitted because absolute travel is set. \\
\hline & \(23^{*}\) & Coordinate system setting & 0, 1 & Set so that homing is in minus direction. \\
\hline \multirow{7}{*}{} & 00 & The 1st target position (rotation number) & 10 & Set the feed position coordinates. \\
\hline & 01 & The 1st target position (pulse) & 0 & \\
\hline & 02 & The 1st coordinate setting & 1 & Set absolute travel. \\
\hline & 03 & The 1st setting speed & 2000 & Set any desired operation speed. \\
\hline & 04, 05 & The 1st acceleration time/ The 1st deceleration time & 200 & Set any desired acceleration/deceleration time. \\
\hline & 06 & The 1st block setting & 1 & Execute running to the 2nd point, after executing running to the 1st point. \\
\hline & 07 & The 1st block timer setting & 500 & The 2nd point operation is started in 500 ms . \\
\hline \multirow{7}{*}{} & 08 & The 2nd target position (rotation number) & 2 & Set the return position coordinate. \\
\hline & 09 & The 2nd target position (pulse) & 0 & (Set 0 when the position is the same as home.) \\
\hline & OA & The 2nd coordinate setting & 1 & Set absolute travel. \\
\hline & ob & The 2nd setting speed & 2000 & Set any desired operation speed. \\
\hline & OC, Od & The 2nd acceleration time/ The 2nd deceleration time & 200 & Set any desired acceleration/deceleration time. \\
\hline & OE & The 2nd block setting & 0 & Set normal operation. \\
\hline & OF & The 2nd block timer setting & 0 & Ineffective because OE is 0 . \\
\hline
\end{tabular}

Door opening/closing

\section*{- When executing reciprocating operation between 2 points}

<Example of setting>
- When open/close is ch
When open/close is chosen and II is
input, open/close operation is executed - input, open/close operation is exec
- When the door is stopped in any position on the way of action, opening o
closing operation is enabled from such closing operation is enabled from such
position. It is the same when the door i position. (It his the same when the door
moved by hand with motor disabled.) Use of bumping homing enables elimination of home sensor. - Holding torque w
can be changed.
[Signal function setting]
\begin{tabular}{|c|c|c|c|}
\hline Termina & Terminal number & Terminal name & Description of function \\
\hline I1 & 1 & Signal input 1 & Operates when "I1" and "GND" are shorted (Homing operation for the first time after power-on) \\
\hline 12 & 2 & Signal input 2 & Opening (point 2) operation when "I2" and "GND" are shorted, and closing (point 1) operation when they are open. \\
\hline 13 & 11 & Signal input 3 & Motor is free when "I3" and "GND" are open. (Servo lock released) \\
\hline 14 & 4 & Signal input 4 & Operation is stopped when "I4" and "GND" are open. (Motor is not activated while they are open.) \\
\hline 01 & 6 & Signal output 1 & Trip output (Normally on, and off in tripping) \\
\hline 02 & 12 & Signal output 2 & In motion signal (including homing operation) \\
\hline
\end{tabular}
- Coordinate system + direction depends on
- Coordinate system + direction depends on
configuration of gear head and machine. When setting
(tan conifuration of gear head and machine. When seting
the rotation direction CCW of motor shatt to +, set
Pr 23 at "O" and when setting CW to + set Pre3 at "1", Pr23 at "0", and when setting CW to + , set Pr 23 at "1"
When setting the Mechanical end offset value to -144, When setting the Mechanical end offset value to - 144 ,
the Home is the point which has moved 144 pulses to the + direction seen from the Mechanical end.
Mechanical end Homing direction (-)
The 1st point
(closed) \(\quad \begin{aligned} & \text { The 2nd point } \\ & \text { (opened) }\end{aligned}\) [Operation timing chart]

[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)
\begin{tabular}{|c|c|c|c|c|}
\hline Function & & Name of parameter & Setting & Remarks \\
\hline \multirow[b]{8}{*}{} & \(50^{*}\) & I1 function selection & 8 & Run start \\
\hline & \(51^{*}\) & 12 function selection & 6 & Point designation 1 input (choosing the 1st/2nd point) \\
\hline & \(52^{*}\) & 13 function selection & 15 & Motor-free input \\
\hline & \(53^{*}\) & 14 function selection & 1 & Instantaneous stop input \\
\hline & \(56^{*}\) & 13 input logic selection & 1 & Changes the polarity of 13 to effective when open (motor-free in this case). \\
\hline & \(57^{*}\) & 14 input logic selection & 1 & Changes the polarity of 14 to effective when open (instantaneous stop in this case) \\
\hline & 5 C & 01 function selection & 0 & Trip output \\
\hline & 5 d & 02 function selection & 2 & In-motion signal \\
\hline \multirow{11}{*}{} & 40 & Homing mode & 3 & Bumping homing \\
\hline & 41 & Homing direction & 1 & Set the homing direction normally to minus direction (closing direction). \\
\hline & 42 & Homing speed & 200 & Set any desired operation speed. \\
\hline & 44 & Homing acceleration/deceleration time & 200 & Set any desired acceleration/deceleration time. \\
\hline & 45 & Bumping torque detection value & 50 & Torque limit during bumping homing \\
\hline & 46 & Bumping torque detection time & 100 & Home is detected when torque restriction continues for one second. \\
\hline & 47 & Home offset & -144 & Set the distance from the home desired to be set to the mechanical end. \\
\hline & \(48^{*}\) & Homing function & 2 & When power is turned on, homing operation is executed by initial It input. \\
\hline & 49 & Homing selection when motor is free & 0 & Homing is not required when tripping occurs. \\
\hline & 4A & Present position overfiow permission & 0 & Overflow is not permitted because absolute travel is set. \\
\hline & \(23^{*}\) & Coordinate system setting & 0, 1 & Set so that homing is in minus direction. \\
\hline \multirow{6}{*}{} & 00 & The 1st target position (rotation number) & 0 & Set the door closing position coordinate. \\
\hline & 01 & The 1st target position (pulse) & 0 & (Coordinate is 0 when closing position is the same as home position.) \\
\hline & 02 & The 1st coordinate setting & 1 & Set absolute travel. \\
\hline & 03 & The 1st setting speed & 2000 & Set any desired operation speed. \\
\hline & 04, 05 & The 1st acceleration time/ The 1st deceleration time & 200 & Set any desired acceleration time and deceleration time. \\
\hline & 06 & The 1st block setting & 0 & Set normal op \\
\hline \multirow{5}{*}{} & 08 & The 2nd target position (rotation number) & 40 & Set the door opening position coordinate. \\
\hline & 09 & The 2nd target position (pulse) & 0 & Set he door opening postion coordinate. \\
\hline & \[
0 \mathrm{~A}
\] & The 2nd coordinate setting & \[
\begin{gathered}
1 \\
2000
\end{gathered}
\] & Set absolute travel. \\
\hline & OC, Od & The 2nd acceleration time/ The 2nd deceleration time & 200 & Set any desired acceleration time and deceleration time. \\
\hline & OE & The 2nd block setting & 0 & Set normal operation. \\
\hline \multicolumn{5}{|l|}{For automatically changing the retention torque (retention force) when door is stopped} \\
\hline \multirow[t]{4}{*}{} & 2 E & Torque limit setting & 100 & Sets the retention torque when door is stopped. The smaller the value is, the weaker the retention force becomes. \\
\hline & 35 & The 2nd torque limit setting & 150 & Maximum output torque when door is operating. \\
\hline & 36 & Gain switching mode selection & 2 & Set to 0 when executing no switching. \\
\hline & 37 & Gain switching time & 100 & Torque is changed in 100 ms after completion of operation instruction. \\
\hline
\end{tabular}

Specification (For Common specification, see p. 47, p. 48)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{Rated (\(N \cdot m\))} & \multirow[t]{2}{*}{Starting (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[t]{2}{*}{Rated speed (\(\mathrm{r} / \mathrm{min}\))} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Maximum } \\
& \text { rotation } \\
& \text { speed } \\
& (r / m i n)
\end{aligned}
\]} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable with power connection cab & Motor & & Voltage AC (V) & \[
\begin{aligned}
& \text { Allowed } \\
& \text { range } \\
& (\%)
\end{aligned}
\] & \begin{tabular}{l}
Frequency \\
(Hz)
\end{tabular} & Rated input current (A) & & & & \\
\hline 80 mm & MBEG5A1BCP (MBEG5A1BCPC) & \multirow{3}{*}{MBMU5AZAB} & \multirow{3}{*}{50} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & & \multirow{3}{*}{0.16} & \multirow{3}{*}{0.24} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & \multirow[t]{2}{*}{MBEG5A5BCP (MBEG5A5BCPC)} & & & & & & Single phase 0.7 & & & & \\
\hline & & & & & & & 3.phase 0.35 & & & & \\
\hline
\end{tabular}
\(\square\) Permissible torque at output shaft of gear head (\(\mathrm{N} \cdot \mathrm{m}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Applicable Gear head & \multicolumn{2}{|l|}{Reduction ratio} & 5 & 10 & 15 & 20 & 30 & 50 \\
\hline \multirow{3}{*}{MB8G \(\square\) BV} & \multirow[t]{2}{*}{motor rotation speed
(r/min)} & 3000 or less & 0.71 & 1.4 & 2.2 & 2.8 & 4.0 & 6.8 \\
\hline & & 3000 to 4000 & 0.53 & 1.1 & 1.7 & 2.1 & 3.0 & 5.1 \\
\hline & \multicolumn{2}{|l|}{Rotational direction} & \multicolumn{4}{|c|}{Same as motor rotational direction} & \multicolumn{2}{|l|}{Reverse to motor rotational direction} \\
\hline
\end{tabular}
- Permissible load inertia moment (\(\times 10^{-4} \mathbf{~ k g} \cdot \mathrm{~m}^{2}\))
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Reduction ratio & \(\mathbf{5}\) & \(\mathbf{1 0}\) & \(\mathbf{1 5}\) & \(\mathbf{2 0}\) & \(\mathbf{3 0}\) & \(\mathbf{5 0}\) \\
\hline Applicable Gear head & 3.42 & 13.8 & 30.6 & 55.8 & 127 & 342 \\
\hline MB8G \(\square \mathbf{B V}\) & & & & \\
\hline
\end{tabular}
\(\square\) Permissible shaft load

\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{} & \begin{tabular}{c}
Overhung load \\
(W)
\end{tabular} & \begin{tabular}{c}
Thrust load \\
(F)
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Applicable \\
Gear head
\end{tabular}} & MB8G5BV & 245 N & \multirow{3}{*}{\(98 \mathbf{N}\)} \\
\cline { 2 - 3 } & MB8G10BV, 15BV, 20BV & \(343 \mathbf{N}\) & \multirow{2}{*}{98} \\
\cline { 2 - 3 } & MB8G30BV, 50BV & 539 N & \\
\hline
\end{tabular}

Speed-torque \(\begin{aligned} & \text { Dotted line shows a characterisicic curve } \\ & \text { when supply voltage drops by } 10 \%\end{aligned}\)

In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter \(\left(2.0 \mathrm{~mm}^{2}\right)\) or more both for main circuit and grounding. Apply grounding class D (\(100 \Omega\) or below) for grounding. Do not tighten the ground wires together, but connect them individually.

ing terminal.

Please refer to P. 95 Support option
Before using, be sure to read "Instruction manual" to check precautions and correct procedure

\section*{Motor (dimensions)}

Gear head (dimensions)
MB8G \(\square\) BV

\section*{Brushless amplifier (dimensions)}

nit mm

\footnotetext{
<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
}

Specification (For Common specification, see p. 47, p. 48)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Rated } \\
& \text { torque } \\
& (\cdot \mathrm{m})
\end{aligned}
\]} & \multirow[t]{2}{*}{Starting (\(N \cdot m\))} & \multirow[t]{2}{*}{Rated speed (\(\mathrm{r} / \mathrm{min}\))} & \multirow[t]{2}{*}{Maximum rotation speed
\((\mathrm{r} / \mathrm{min})\)
\(\qquad\)} \\
\hline Size & Brushless Amplifier Model number in () is shipped
with power connection cable with power connection cable & Motor & & Voltage AC (V) & \[
\begin{gathered}
\text { Allowed } \\
\text { range } \\
(\%)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Frequency } \\
& (\mathrm{Hzz})
\end{aligned}
\] & Rated input current (A) & & & & \\
\hline \multirow{3}{*}{\[
\begin{gathered}
90 \mathrm{~mm} \\
\mathrm{sq} .
\end{gathered}
\]} & MBEG9A1BCP (MBEG9A1BCPC) & MBMU9A1AB & \multirow{3}{*}{90} & Singe phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline 2.2 \\
\hline Single phase 1.1
\end{tabular}} & \multirow{3}{*}{0.29} & \multirow{3}{*}{0.43} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline & MBEG9A5BCP & MBMU9A2AB & & Sincele & & & & & & & \\
\hline & (MBE & & & & & & 3.phase 0.5 & & & & \\
\hline
\end{tabular}
- Permissible torque at output shaft of gear head (\(\mathrm{N} \cdot \mathrm{m}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Applicable Gear head & \multicolumn{2}{|l|}{Reduction ratio} & 5 & 10 & 15 & 20 & 30 & 50 \\
\hline \multirow{3}{*}{MB9G \(\square\) BV} & motor rotation & 3000 or less & 1.2 & 2.5 & 3.6 & 4.9 & 7.0 & 11.6 \\
\hline & speed
\((\mathrm{r} / \mathrm{min})\) & 3000 to 4000 & 0.90 & 1.9 & 2.7 & 3.7 & 5.3 & 8.7 \\
\hline & \multicolumn{2}{|l|}{Rotational direction} & \multicolumn{4}{|c|}{motor rotational dir} & \multicolumn{2}{|l|}{se to motor rotational} \\
\hline
\end{tabular}

\section*{\(\square\) Permissible load inertia moment (\(\times 10^{-4} \mathbf{~ k g} \cdot \mathrm{~m}^{2}\))}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Reduction ratio & \(\mathbf{5}\) & \(\mathbf{1 0}\) & \(\mathbf{1 5}\) & \(\mathbf{2 0}\) & \(\mathbf{3 0}\) & \(\mathbf{5 0}\) \\
\hline Applicable Gear head & 16.4 & 67.6 & 142 & 257 & 589 & 1684 \\
\cline { 1 - 6 } & & & & & & \\
\hline
\end{tabular}
\(\square\) Permissible shaft load

\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{} & \begin{tabular}{c}
Overhung load \\
(W)
\end{tabular} & \begin{tabular}{c}
Thrust load \\
(F)
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Applicable \\
Gear head
\end{tabular}} & MB9G5BV & 294 N & \multirow{3}{*}{147 N} \\
\cline { 2 - 3 } & MB9G10BV, 15BV, 20BV & 490 N & \multirow{2}{*}{14} \\
\cline { 2 - 3 } & MB9G30BV, 50BV & 637 N & \\
\hline
\end{tabular}

\section*{Wiring diagram}

In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter \(\left(2.0 \mathrm{~mm}^{2}\right)\) or more both for main circuit and grounding. Apply
grounding class \(\mathrm{D}(100 \mathrm{\rho}\) or below) for grounding. Do not tighten the ground wires grounding class D (\(100 \Omega\) or below) for grounding. Do not tighten the ground wires
together, but connect them individually.
Please refer to P. 95 Supporto
Before using, be sure to read "Instruction manual" to check precautions and correct procedure

\section*{Motor (dimensions)}

Gear head (dimensions)

\section*{MB9G \(\square\) BV}

\({ }^{2} 2\) Dimensions and mass with () is the gearhead of gear ratio greater than 30 .

\section*{Brushless amplifier (dimensions)}

.
<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information

Specification (For Common specification, see p. 47, p. 48)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Model No. / Amplifier and Motor} & \multirow[t]{2}{*}{Rated output (W)} & \multicolumn{4}{|l|}{Input power supply for Amplifier} & \multirow[b]{2}{*}{Rated torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[b]{2}{*}{Starting (\(\mathrm{N} \cdot \mathrm{m}\))} & \multirow[b]{2}{*}{Rated speed (\(\mathrm{r} / \mathrm{min}\))} & \multirow[t]{2}{*}{} \\
\hline Size & Brushless Amplifier Model Iumber in \((\boldsymbol{1}\) is stipped with power connection cable & Motor & & Voltage AC (V) & Allowed (\%) (\%) & \[
\begin{aligned}
& \text { Frequency } \\
& \text { (Hzz) }
\end{aligned}
\] & Rated input current (A) & & & & \\
\hline mm & MBEG1E1BCP (MBEG1E1BCPC) & MBMU1E1AB & \multirow{3}{*}{13} & Single phase 100 to 120 & \multirow{3}{*}{\(\pm 10\)} & \multirow{3}{*}{50/60} & 2.8 & \multirow{3}{*}{0.41} & \multirow{3}{*}{0.62} & \multirow{3}{*}{3000} & \multirow{3}{*}{4000} \\
\hline sq. & \multirow[t]{2}{*}{MBEG1E5BCP (MBEG1E5BCPC)} & \multirow[t]{2}{*}{MBMU1E2AB} & & \multirow[t]{2}{*}{\(\underbrace{200}_{\substack{\text { Singole phase } \\ \text { P.pase }}}\) to 240} & & & Single phase 1.5 & & & & \\
\hline & & & & & & & 3.phase 0.7 & & & & \\
\hline
\end{tabular}
- Permissible torque at output shaft of gear head (\(\mathrm{N} \cdot \mathrm{m}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Applicable Gear head & \multicolumn{3}{|l|}{Reduction ratio} & 5 & 10 & 15 & 20 & 30 & 50 \\
\hline \multirow{4}{*}{MB9G \(\square\) BV} & \multirow[t]{3}{*}{motor rotation speed
(r/min) (r/min)} & \multicolumn{2}{|l|}{3000 or less} & 1.9 & 3.7 & 5.6 & 7.4 & 10.7 & 17.7 \\
\hline & & 3000 & 100 V & 1.1 & 2.1 & 3.3 & 4.3 & 6.2 & 10.3 \\
\hline & & 4000 & 200 V & 1.4 & 2.8 & 4.2 & 5.6 & 8.0 & 13.3 \\
\hline & \multicolumn{3}{|l|}{Rotational direction} & \multicolumn{4}{|c|}{Same as motor rotational direction} & \multicolumn{2}{|l|}{Reverse to motor rotational direction} \\
\hline
\end{tabular}
\(\square\) Permissible load inertia moment \(\left(\times \mathbf{1 0}^{\mathbf{- 4}} \mathbf{~ k g} \cdot \mathbf{m}^{\mathbf{2}}\right)\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Reduction ratio & \(\mathbf{5}\) & \(\mathbf{1 0}\) & \(\mathbf{1 5}\) & \(\mathbf{2 0}\) & \(\mathbf{3 0}\) \\
\hline Applicable Gear head & 16.4 & 67.6 & 142 & 257 & 589 \\
\hline MB9G \(\square\) BV & & & & & \\
\hline
\end{tabular}
\(\square\) Permissible shaft load

\begin{tabular}{|c|c|c|c|}
\hline & & \begin{tabular}{l}
Overhung load \\
(W)
\end{tabular} & \begin{tabular}{l}
Thrust load \\
(F)
\end{tabular} \\
\hline \multirow{3}{*}{Applicable Gear head} & MB9G5BV & 294 N & \multirow{3}{*}{147 N} \\
\hline & MB9G10BV, 15BV, 20BV & 490 N & \\
\hline & MB9G30BV, 50BV & 637 N & \\
\hline
\end{tabular}

\section*{Wiring diagram}

\(\left.\square \begin{array}{l}\text { Speed-torque } \\ \text { characteristic }\end{array} \begin{array}{l}\text { Dotted ine shows a characterisicic curve } \\ \text { when supply voltage drops by } 10 \% \text {. }\end{array}\right\rangle\)

In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter \(\left(2.0 \mathrm{~mm}^{2}\right)\) or more both for main circuit and grounding. Apply
grounding class \(\mathrm{D}(100 \Omega\) or below) for grounding. Do not tighten the ground wires together, but connect them individually

Please refer to P. 95 Support option
Before using, be sure to read "Instruction manual" to check precautions and correct procedure

\section*{Motor (dimensions)}

Gear head (dimensions)

\section*{MB9G \(\square\) BV}

\({ }^{*} 2\) Dimensions and mass with () is the gearhead of gear ratio greater than 30 .

\section*{Brushless amplifier (dimensions)}

<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information

\section*{Gear head GP series}

\section*{Outline of gear head}

\section*{Reduction ratio}

Reduction ratio are 6 types \(1 / 5\) to \(1 / 50\).

\section*{Gear type/size}

MB8 : 50 W (Hinge not attached) MB9 : 90 W, 130 W (Hinge not attached)

\section*{Backlash}

Less than \(2^{\circ}\) (design value)
Type of gear head and reduction ratio
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Gear type/size} & \multirow[b]{2}{*}{Motor capacity} & \multicolumn{6}{|c|}{Reduction ratio} \\
\hline & & 1/5 & 1/10 & 1/15 & 1/20 & 1/30 & 1/50 \\
\hline MB8 & 50 W & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline MB9 & \(90 \mathrm{~W}, 130 \mathrm{~W}\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Check the Model number}

The motor and gear are sold separately.

\section*{Calculation of torque at output shaft of gear head}

\section*{Standard gear head only}
\(\mathbf{N G}_{\mathbf{G}}=\frac{\mathbf{N M}}{\mathbf{i}}\)
Ng : Speed of gear head
[r/min]
TG: Output torque of gear head \(\{\mathbf{N} \cdot \mathbf{m}\)
\(\mathbf{T} \mathbf{G}=\mathbf{T M} \times \mathbf{i} \times \eta\)
i : Reduction ratio of gear head
\(\begin{array}{ll}\text { Tм } & \text { : Motor torque } \\ \eta & \text { : Gear head efficiency }\end{array}\)

\section*{Maximum permissible torque}

There is a limit to the strength of a gear due to its material and construction. The usable load torque determined based on this limit is called permissible torque. As can be seen from the above-mentioned formula, the load becomes larger when the reduction ratio is increased. If the gear head is used with the load exceeding the permissible torque, its life expectancy will be shortened significantly. Refer to the permissible torque for each model and use the gear head at an appropriate load.

\section*{Nominal reduction ratio and actual reduction ratio}

Actual reduction ratio of MB8, MB9 is the same as the nominal reduction ratio
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Nominal reduction ratio} \\
\hline \multicolumn{2}{|l|}{Gear type} & 1/5 & 1/10 & 1/15 & 1/20 & 1/30 & 1/50 \\
\hline \({ }^{\text {Actual }}\) & MB8G \(\square\) BV & 5 & 10 & 15 & 20 & 30 & 50 \\
\hline ratio & MB9G \(\square\) BV & 5 & 10 & 15 & 20 & 30 & 50 \\
\hline
\end{tabular}

\section*{Gear head efficiency}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ Reduction ratio } \\
\hline Gear type & \(\mathbf{1 / 5}\) & \(\mathbf{1 / 1 0}\) & \(\mathbf{1 / 1 5}\) & \(\mathbf{1 / 2 0}\) & \(\mathbf{1 / 3 0}\) & \(\mathbf{1 / 5 0}\) \\
\hline MB8G \(\square \mathbf{B V}\) & \multicolumn{5}{|c|}{\(90 \%\)} & \(86 \%\) \\
\hline MB9G \(\square \mathbf{B V}\) & \multicolumn{5}{|c|}{\(90 \%\)} & \(86 \%\) \\
\hline
\end{tabular}

Gear head efficiency and ambient temperature
Calculate the actual gear head efficiency by multiplying he above-shown gear head efficiency at room emperature by the torque reduction ratio shown below.

\section*{Standard life}

Standard life is 10000 hours for the motor equipped with gear head (MB8G and MB9G)
(Standard life of sealing performance of oil seal is 5000 hours.)
Standard life refers to design life for operation 8 hours per day (service factor: \(\mathrm{Sf}=1.0\)) at a normal temperature and humidity, under uniform load (permissible shaft torque of gear head and rated torque of motor).
*Standard life in the case of \(3000 \mathrm{r} / \mathrm{min}\) to \(4000 \mathrm{r} / \mathrm{min}\) rotation speed of the motor, please calculated by the following formula. Standard life (hours) \(=10000(\mathrm{~h}) \times 3000(\mathrm{r} / \mathrm{min}) /\) rotation speed (r/min)

\section*{<Information>}

Repeated forward/reverse operation with motor shaft rotation angle below 45 degrees causes fretting of bearing (partial wear due to bearing out of grease), and is not advisable. It does not apply if operation is available to rotate the motor shaft above 45 degrees at an appropriate interval more than once a day.)
Oscillation due to inappropriate setting of gain, also causes fretting.
Note that gear head shaft is also subject to this restriction.

\section*{Service factor (Sf)}

Life expectancy \(=\frac{\text { Standard life }}{\text { Service factor (Sf) }}\)
Service factor (Sf) varies with impact of load and operation time. The table below shows how the service factor value depends on load condition.
\begin{tabular}{|c|l|c|c|c|}
\hline \multirow{2}{*}{ Type of load } & \multicolumn{1}{|c|}{ Typical load } & \multicolumn{3}{|c|}{ Service factor } \\
\cline { 3 - 5 } & Constant & Selt conveyor, One-directional rotation & \(\mathbf{1 . 0}\) & \(\mathbf{8}\) hours/day \\
\hline Lhours/day & 24hours/day \\
\hline Light-impact & Start/Stop, Cam-drive & 1.2 & 1.5 & 2.5 \\
\hline Medium-impact & Instant FWD/REV, Instant stop & 1.5 & 2.0 & 2.5 \\
\hline Heavy-impact & Frequent medium-impact & 2.5 & 3.0 & 3.5 \\
\hline
\end{tabular}

\section*{<lmportant>}

The gear heads MB8G \(\square\) BV and MB9G \(\square\) BV are designed for use with GP series, and MX8G \(\square \mathrm{B}\), MZ9G \(\square \mathrm{B}\) and MY9G \(\square \mathrm{B}\) are designed for use with GV series, respectively, and they are not compatible with gear heads of different series.

\section*{Gear head GP serics}

\section*{Model list of gear head}

\section*{Gear head}
\begin{tabular}{|c|c|c|}
\hline Size & Reduction ratio & Model No. \\
\hline \multirow{3}{*}{80 mm sq. (50 W)} & 1/5, 1/10, 1/15 & MB8G5BV, MB8G10BV, MB8G15BV \\
\hline & 1/20, 1/30 & MB8G20BV, MB8G30BV \\
\hline & 1/50 & MB8G50BV \\
\hline \multirow[t]{3}{*}{\[
\left.\begin{array}{c}
90 \mathrm{~mm} \text { sq. } \\
(90 \mathrm{~W} \cdot 130 \mathrm{~W} \\
\text { Common use }
\end{array}\right)
\]} & 1/5 & MB9G5BV \\
\hline & 1/10, 1/15 & MB9G10BV, MB9G15BV \\
\hline & 1/20, 1/30, 1/50 & MB9G20BV, MB9G30BV, MB9G50BV \\
\hline
\end{tabular}

For the specifications for each item, refer to the page of the motor to which it can be applied.

\section*{Gear head accessory}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Reduction } \\
\text { ratio }
\end{gathered}
\]} & \multirow[b]{2}{*}{Model No .} & \multicolumn{5}{|c|}{Accessory} \\
\hline & & & Screw (mm) & Flat & \[
\begin{gathered}
\text { Hexagon } \\
\text { nut }
\end{gathered}
\] & For temporary assembling screw hexagon socket head bolt & Key \\
\hline \multirow[b]{2}{*}{80 mm sq .} & 1/5 to 1/20 & MB8G5BV to MB8G20BV & \begin{tabular}{l}
M6×65 \\
hexagon socket head bolt \(: 4\)
\end{tabular} & for M6: 4 & M6: 4 & M2.6x12 : 2 & \(5 \times 5 \times 25\) one-end round : 1 \\
\hline & 1/30, 1/50 & MB8G30BV. MB8G50BV & \begin{tabular}{l}
M6×70 \\
hexagon socket head bolt \(: 4\)
\end{tabular} & for M6: 4 & M6: 4 & M2.6x12 : 2 & \[
\begin{aligned}
& 5 \times 5 \times 25 \\
& \text { one-end round }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{90 mm sq .} & 1/5 to 1/20 & MB9G5BV to MB9G20BV & \begin{tabular}{l}
M8×75 \\
hexagon socket head bolt \(: 4\)
\end{tabular} & for M8: 4 & M8: 4 & M3×12: 2 & \(6 \times 6 \times 25\) \(6 \times 6 \times 25\)
one-end round \\
\hline & 1/30, 1/50 & MB9G30BV. MB9G50BV & \begin{tabular}{l}
M8×90 \\
hexagon socket head bolt \(: 4\)
\end{tabular} & for M8: 4 & M8: 4 & M3×12: 2 & \(6 \times 6 \times 25\) \(6 \times 6 \times 25\)
one-end round \\
\hline
\end{tabular}

\section*{© 0 -ring}
\begin{tabular}{|c|c|}
\hline Repair parts & 10pcs / bag \\
\hline Size & Part No. \\
\hline \(\mathbf{8 0} \mathbf{~ m m ~ s q . ~}\) & DVOPN10008 \\
\hline \(\mathbf{9 0} \mathbf{~ m m ~ s q . ~}\) & DVOPN10009 \\
\hline
\end{tabular}

\section*{<Information>}

MB type gear head is provided with temporary assembling screw (two hexagon socket head bolt). Before installing the equipment, assemble he motor and gear head temporarily, which will ensure stable installaion of the equipment. In installing to the equipment, be sure to use four "mounting screws" attached to the gear head for secure installation.

Assemble with motor pinion faced up.
Outward direction of motor leadwire can be aligned with any one of 4 sides of gear head with an output shaft at a different position

Options - Details
ist of peripheral equipments .. 67

\section*{Option}

\section*{Noise filter/ Surge absorber/ MCCB}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Part name } & \begin{tabular}{c}
Optional parts \\
number (poption)
\end{tabular} & \begin{tabular}{c}
Manufacturer's \\
parts number
\end{tabular} & Oty. & \multirow{2}{*}{ Manufacturer } \\
\hline Noise filter (single phase \(100 \mathrm{~V}, 200 \mathrm{~V}\)) & DVOP4170 & SUP-EK5-ER-6 & 1 & \\
\hline Noise filter (3-phase) & DVOPM20042 & 3SUP-HU10-ER-6 & 1 & \multirow{2}{*}{ OKAYA ELECTRIC } \\
\hline Surge absorber (single phase \(100 \mathrm{~V}, 200 \mathrm{~V}\)) & DVOP4190 & R•A•V-781BWZ-4 & 1 & \multirow{2}{*}{ IND. CO., LTD. } \\
\hline Surge absorber (3-phase) & DVOP1450 & R•A•V-781BXZ-4 & 1 & \\
\hline Noise filter for control signals & DVOP1460 & ZCAT3035-1330 & 4 & \multirow{2}{*}{ TDK Corporation } \\
\hline
\end{tabular}

\section*{Noise filter GV KV GP}
- DVOP4170

Surge absorber GV KV GP
- DVOP4190

DV0P1450

Circuit
diagram

Noise filter for control signals GV KV GP
- DVOP1460

[Unit: mm]

\section*{Recommended circuit breaker (MCCB)}

Made by Sensata Technologies Japan Limited: Type IELH-1-11-63-5A-M (single phase) Type IELH-1-111-63-5A-M (3-phase) (Rated current 5A, cutoff characteristics DELAY63) Recommended cutoff characteristics: DELAY61-63

\section*{Settings}

Digital key pad GV KV GP

\section*{Optional part number \\ DVOP3510}

\section*{(Mounting hole side)}
- RUN/STOP key
- Digital monitor [Rotation speed, Com manded speed, Internal DC voltage Load factor, Torque, Trip history, (Display of the trip occurs, confirmation of the trip history) Overload warning (flashing)] - Set/change parameters
- Storage of the parameters (read, write)

Cable
Console A connection cable GV KV

Digital key pad connection cable GV KV GP
\begin{tabular}{|c|c|}
\hline Optional parts number & Length (L) \\
\hline DVOP38310 & 1 m \\
\hline DVOP38330 & 3 m \\
\hline DVOP38350 & 5 m \\
\hline
\end{tabular}

Amp.side connector (SER)/modular plug RJ45
Digital key pad side connector (Molex Inc.) Connector : 39-01-2105 (5557-10R-210) \begin{tabular}{|l|c|c|c|c|c|c|cc|}
\hline Amp.side connector pin No.(SER) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Terminal name & - & +5 V SOT & SIN & - & - & GND & SCK \\
\hline Digital key pad side connector pin No. & - & 5 & 9 & 8 & - & - & 3 & 7 \\
\hline
\end{tabular}

\section*{Option}

Motor extension cable GV GP
\begin{tabular}{|c|c|}
\hline Optional parts number & Length（L） \\
\hline DVOPQ1000110 & 1 m \\
\hline DVOPQ1000130 & 3 m \\
\hline DVOPQ1000150 & 5 m \\
\hline DVOPQ10001A1 & 10 m \\
\hline
\end{tabular}

\section*{Accesa}
－Insulating cap（for grounding wire insulation） 1 M4 \(\times 6\) pan head screw with spring washer 1 M4 hex．nut

Insulating cap（for grounding wire insulation）

Grounding wire
（1）Brushless amplifier side connector（Molex Inc．）
Connest
Connector ：39－01－2085（5557－08R－210）
Connector pin ：39－00－0039（5556TL）［for AWG 20］ 39－00－0047（5556T2L）（for AWG 26］
（2）Motor side connector（Molex Inc．）
Connector ：39－01－2086（5559－08P－210）
Connector pin：39－00－0041（55588t）［for AWG 20］
＜Connector wiring＞
grounding wire to the grounding wire of the motor，and connect a arth terminal of the brushless amplifier：
For connecting grounding wire of motor and motor extension cable，use M4 screw and insulating cap supplied as accessories．
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{－Brushless amplifier side} & －Motor side \\
\hline Pin No． & Signal & Wire color & Wire size & Pin No． \\
\hline 1 & U & Red & AWG20 & 1 \\
\hline 2 & v & White & AWG20 & 2 \\
\hline 3 & W & Black & AWG20 & 3 \\
\hline 4 & Vcc & White & AWG26 & 4 \\
\hline 5 & CS1 & Red & AWG26 & 5 \\
\hline 6 & CS2 & Blue & AWG26 & 6 \\
\hline 7 & CS3 & Yellow & AWG26 & 7 \\
\hline 8 & OV & Black & AWG26 & 8 \\
\hline \[
\begin{gathered}
\text { M4 } \\
\text { round } \\
\text { terminal }
\end{gathered}
\] & E & GreenYellow & AWG20 & \[
\begin{gathered}
\text { M4 } \\
\text { round } \\
\text { terminal }
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Motor extension cable } \\
\hline Optional parts number & Length（L） \\
\hline DVOPQ1000310 & 1 m \\
\hline DVOPQ1000330 & 3 m \\
\hline DVOPQ1000350 & 5 m \\
\hline DVOPQ10003A1 & 10 m \\
\hline
\end{tabular}

\section*{＜Wiring of motor side connector＞}
－Motor connector
\begin{tabular}{|c|c|c|}
\hline Pin No． & Signal & Wire color \\
\hline 1 & U & Red \\
\hline 2 & V & White \\
\hline 3 & W & Black \\
\hline 4 & E & Green／Yellow \\
\hline
\end{tabular}
－Sensor connector \begin{tabular}{l}
\multicolumn{3}{|l}{ Sensor connector } \\
\hline Pin No． \\
Signal \\
\hline 1
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Stinal & \\
\hline 1 & CS1 & Red \\
\hline 2 & CS2 & Blue \\
\hline 3 & CS3 & Yellow \\
\hline 4 & Vcc & White \\
\hline 5 & OV & Black \\
\hline 6 & NC & － \\
\hline
\end{tabular}

Motor side motor connector（Tyco Electronics．） Connector

Cor sensor connector（Molex Inc．）
Connector ：39－01－2066（5559－06P－210） Connector pin ：39－00－0049（5558T2L）（for AWG 26）
3Brushless amplifier side connector（Molex Inc．）
Connector ：39－01－2085（5557－08R－210）
Connector pin ：39－00－0039（5556TL）［for AWG 20］ 39－00－0047（5556T2L）〔for AWG 26〕
＜Connector wiring of amplifier side＞
\begin{tabular}{|c|c|c|c|}
\hline Pin No． & Signal & Wire color & Wire size \\
\hline 1 & U & Red & AWG20 \\
\hline 2 & V & White & AWG20 \\
\hline 3 & W & Black & AWG20 \\
\hline 4 & Vcc & White & AWG26 \\
\hline 5 & CS1 & Red & AWG26 \\
\hline 6 & CS2 & Blue & AWG26 \\
\hline 7 & CS3 & Yellow & AWG26 \\
\hline 8 & OV & Black & AWG26 \\
\hline \begin{tabular}{c}
M4 \\
round \\
terminal
\end{tabular} & E & GreenNellow & AWG20 \\
\hline
\end{tabular}

PC connection cable（10－pin D－sub connector pin 1.5 m ）GV KV GP

\section*{Optional parts number Length（L）}
\begin{tabular}{l|l|}
DVOP4140 & 1.5 m \\
\hline
\end{tabular}

This 14－pin connector is used for different series．\(\xrightarrow[\text { CNI }]{\rightarrow \text { 国 }}\)
［Unit：mm］

Communication software GV KV GP
\begin{tabular}{|c|l|}
\hline Model No． & \\
\hline PANATERM for BL & \begin{tabular}{l}
Can be downloaded from our web site，free of charge． \\
http：／／industrial．panasonic．com／ww／products／motors－compressors／fa－motors
\end{tabular} \\
\hline
\end{tabular}

\section*{Connector Kit／Cable／External speed setter}

Control signal cable（Cable with an I／O connector）GV KV GP

\section*{Option}
\begin{tabular}{|c|c|c|c|c|c|}
\hline I/O connector kit & \multicolumn{5}{|l|}{GV KV GP} \\
\hline Optional part number & Name & Manufacturer's parts No. & Qty. & Manufacturer & Note \\
\hline \multirow[t]{2}{*}{DVOPM20070} & Connector & PAP-10V-S & 1 & \multirow[t]{2}{*}{J.S.T Mfg.Co.,Ltd.} & \multirow[t]{2}{*}{Fits to I/O connector} \\
\hline & Connector pin & SPHD-002T-P0.5 & 10 & & \\
\hline
\end{tabular}

\section*{DIN rail mounting unit GV KV (50 w, 100 w) GP}

Hook the upper side of DIN rai
mounting part on the DIN rail.

\section*{- Removing from DIN Rail}

\section*{<Caution of when using external regeneration resistor> \\ Since it becomes high temperature, external regeneration resistor must be installed according to the contents shown below.}
- Attach to incombustibles, such as metal
- Install in the place which cannot touch directly by covering with incombustibles etc.
- Do not install near the combustibles.

Although the thermal cutoff is built in external regeneration resistor the skin temperature of regeneration resistor may become high exceeding the operating temperature of thermal cutoff by the time the hermal cutoff operates in amplifier failure.
The thermal cutoff is for preventing ignition of the regeneration resisto in amplifier failure, and is not for controlling the skin temperature of resistor.

\section*{Remarks>}

Thermal fuse is installed for safety
The thermal fuse may blow due to heat dissipating condition, working The thermal fuse may blow due to heat dissipating
Make it sure that the surface temperature of the resistor may not exceed \(100^{\circ} \mathrm{C}\) at the worst running conditions with the machine, which brings large regeneration (such case as high supply voltage, load inertia is large or deceleration time is short) Please carry out air cooling if needed.
* Insert the insulation paper to positiv
 Do not connect anything to the pin no. 4 and pin no. 7 in case of use the GP series.
External speed setter GV KV

Optional part number DVOPM20078

Panel connector kit (Fits to Console A) GV KV
\begin{tabular}{|c|c|c|c|c|c|}
\hline Optional part number & Name & Manufacturer's parts No. & Oty. & Manufacturer & Note \\
\hline \multirow{2}{*}{ DVOP3610 } & Connector & \(39-01-2105(5557-10 R-210)\) & 1 & \multirow{2}{*}{ Molex Inc } & \multirow{2}{*}{ Fits to Console A } \\
\cline { 2 - 5 } & Connector pin & \(39-00-0047(5556\) T2L) & 10 & & \\
\hline
\end{tabular}

> - 39-01-2105 (5557-10R-210)

External regenerative resistor GV KV GP
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Optional parts number} & \multirow[t]{2}{*}{Manufacturer's parts number} & \multicolumn{3}{|c|}{Specifications} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Note } \\
\text { (Input Power of drive) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Manufacturer} \\
\hline & & Resistance & Rated power & Activation temperature of built-in fuse & & \\
\hline DVOP2890 & 45M03 & \(50 \Omega\) & 10 W & \(137 \pm{ }_{-3}{ }^{\circ} \mathrm{C}\) & 100 V & \multirow[t]{2}{*}{Iwaki Musen Kenkyusho Co., Ltd} \\
\hline DVOPM20068 & 45M03 & \(200 \Omega\) & 10 W & \(137{ }_{-2}{ }^{\circ} \mathrm{C}\) & 200 V & \\
\hline
\end{tabular}

GV GP
* Connect terminals to pins No. 3 and No. 5 of the power supply connector, respecKV
*When using amplifiers of 50 W or 100 W .
Connect terminals to pins No. 3 and No. 5 of the power supply connector, respectively.
When using amplifiers of \(200 \mathrm{~W}, 400 \mathrm{~W}\)
or 750 W . Connect terminals to pins No. 4 or 750 W. Connect terminals to pins No. 4
(P) and No. 5 (B1) of the power supply terminals block with using pin terminals.

\section*{Reactor GV KV GP}

Fig. 1

-Wiring of the reactor <3-Phase \(200 \mathrm{~V}>\)

c: Center-to-center distanc

Fig. 2

Wiring of the reactor <Single phase \(100 \mathrm{~V}, 200 \mathrm{~V}\) >

C: Centert--c-center distance on slotted hole

\section*{O-ring GV GP}

Repair parts 10pcs/bag
\begin{tabular}{|c|c|}
\hline Optional parts number & Size \\
\hline DVOPN10008 & \(\mathbf{8 0} \mathbf{~ m m ~ s q}\). \\
\hline DVOPN10009 & \(\mathbf{9 0} \mathrm{mm}\) sq. \\
\hline
\end{tabular}
- Assemble with motor pinion faced up

Outward direction of motor leadwire can be aligned with any one of
4 sides of gear head with an output shaft at a different position.

Power cable (single phase 100 V, 200 V) with connector GV KV (50 w, 100 w) GP
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 50 W & 90 W & 100 W & 130 W \\
\hline \multirow{2}{*}{GV series} & 100 V & MBEG5A1BCVC & MBEG9A1BCVC & \multirow{2}{*}{-} & MBEG1E1BCVC \\
\hline & 200 V & MBEG5A5BCVC & MBEG9A5BCVC & & MBEG1E5BCVC \\
\hline \multirow[b]{2}{*}{KV series} & 100 V & MBEK5A1BCVC & \multirow[t]{2}{*}{-} & MBEK011BCVC & \multirow[b]{2}{*}{-} \\
\hline & 200 V & MBEK5A5BCVC & & MBEK015BCVC & \\
\hline \multirow{2}{*}{GP series} & 100 V & MBEG5A1BCPC & MBEG9A1BCPC & \multirow{2}{*}{-} & MBEG1E1BCPC \\
\hline & 200 V & MBEG5A5BCPC & MBEG9A5BCPC & & MBEG1E5BCPC \\
\hline
\end{tabular}
- When supplying 3-phase power source to a 200 V brushless amplifier, use the supplied power cable and connect 2 conductors to L1 and L2.
- When supplying 3-phase power, use a power connection kit and connect three conductors to L1, L2 and L3
- For location of L1, L2 and L3, refer to the wiring diagram on pages 17, 19 and 21 (GV series), pages 35 and 37 (KV series), pages 57, 59 and 61 (GP series)
■ Cable specification

Grounding wire

\section*{List of peripheral equipments}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Manufacturer } & \multicolumn{1}{c|}{ Tel No. / Home page } & \multicolumn{1}{c|}{ Peripheral components } \\
\hline TDK Corporation & \begin{tabular}{l}
+81-3-5201-7229 \\
http://www.tdk.co.jp/
\end{tabular} & Noise filter for signal lines \\
\hline Okaya Electric Industries Co. Ltd. & \begin{tabular}{l}
+81-3-4544-7040 \\
http://www.okayatec.co.jp/
\end{tabular} & \begin{tabular}{l}
Surge absorber \\
Noise filter
\end{tabular} \\
\hline Sensata Technologies Japan Limited & \begin{tabular}{l}
+81-49-283-7575 \\
www.sensata.com/japan
\end{tabular} & Circuit breaker (MCCB) \\
\hline Japan Molex Inc. & \begin{tabular}{l}
+81-462-65-2313 \\
http://www.molex.co.jp
\end{tabular} & \multirow{2}{*}{ Connector } \\
\hline J.S.T. Mfg. Co., Ltd. & \begin{tabular}{l}
+81-45-543-1271 \\
http://www.jst-mfg.com/index_i.html
\end{tabular} & \begin{tabular}{l}
+81-44-833-4311 \\
http://www.iwakimusen.co.jp/
\end{tabular} \\
\hline Iwaki Musen Kenkyusho Co., Ltd. & \begin{tabular}{l}
Regenerative resistor \\
http://www.kk-corp.co.jp/
\end{tabular} & Reactor core \\
\hline KK-CORP.CO.JP & \begin{tabular}{l}
+81-6-6911-1455 \\
http://www.nichifu.co.jp/
\end{tabular} & Pin terminal \\
\hline NICHIFU Co.,Itd. & \multicolumn{2}{|c|}{ *This list is for reference only and subject to change without notice. }
\end{tabular}
*This list is for reference only and subject to change without notice.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Guide to the international system of units (SI)

Organization of the system of units

Table 4 : Unit combined with SI unit proper name

Other derived unit

Table 2: Auxiliary unit
\begin{tabular}{l}
Table1: Basic unit \\
\hline Quantity \\
\hline Length \\
\hline Name of unit \\
\hline meter \\
\hline Symbol of unit \\
\hline Time \\
Time \\
kilogram \\
\hline second \\
\hline Therrodynamicent temperature \\
\hline amount of substance \\
\hline kelvin \\
\hline Luminous intensity \\
mol \\
\hline
\end{tabular}

\section*{Table 3: Major derived unit with proper name}
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Name & Symbol of unit & Derivation from basic unit, auxiliary unit or other derived unit \\
\hline Frequency & hertz & Hz & \(1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}\) \\
\hline Force & newton & N & \(1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline Pressure, Stress & pascal & Pa & \(1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}\) \\
\hline Energy, Work, Amount of heat & joule & J & \(1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline Amount of work, Work efficiency, Power, Electric power & watt & W & \(1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}\) \\
\hline Electric charge, Amount of electricity & coulomb & C & \(1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}\) \\
\hline Electric potential, Potential difference, Voltage, Electromotive force & volt & V & \(1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}\) \\
\hline Electrostatic capacity, Capacitance & farad & F & \(1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}\) \\
\hline Electric resistance & ohm & \(\Omega\) & \(1 \Omega=1 \mathrm{~V} / \mathrm{A}\) \\
\hline Electric conductance & siemens & S & \(1 \mathrm{~S}=1 \mathrm{~S}^{-1}\) \\
\hline Magnetic flux & weber & Wb & \(1 \mathrm{~Wb}=1 \mathrm{~V} \cdot \mathrm{~s}\) \\
\hline Magnetic flux density, Magnetic induction & tesla & T & \(1 \mathrm{~T}=1 \mathrm{~Wb} / \mathrm{m}^{2}\) \\
\hline Inductance & henry & H & \(1 \mathrm{H}=1 \mathrm{~Wb} / \mathrm{A}\) \\
\hline Degree centigrade (Celsius) & degree centigrade (Celsius)/ degree & \({ }^{\circ} \mathrm{C}\) & \(\mathrm{t}^{\circ} \mathrm{C}=(\mathrm{t}+273.15) \mathrm{K}\) \\
\hline Luminous flux & lumen & Im & \(1 \mathrm{~lm}=1 \mathrm{~cd} \cdot \mathrm{sr}\) \\
\hline Illuminance & lux & |x & \(1 \mathrm{~lx}=1 \mathrm{~mm} / \mathrm{m}^{2}\) \\
\hline
\end{tabular}
Table 4: Unit combined with SI unit
\begin{tabular}{|c|c|c|}
\hline Quantity & Name & Symbol of unit \\
\hline \multirow{3}{*}{ Time } & minute & min \\
& hour & h \\
& day & d \\
\hline \multirow{3}{*}{ Plane angle } & degree & \(\circ\) \\
& minute & ' \\
& second & " \\
\hline Volume & liter & I, L \\
\hline Weight & ton & t \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Multiples powered to unit} & \multicolumn{2}{|c|}{Prefix} \\
\hline & Name & Symbol \\
\hline \(10^{18}\) & exa & E \\
\hline \(10^{15}\) & peta & P \\
\hline \(10^{12}\) & tera & T \\
\hline \(10^{\circ}\) & giga & G \\
\hline \(10^{6}\) & mega & M \\
\hline \(10^{3}\) & kilo & k \\
\hline \(10^{2}\) & hecto & h \\
\hline 10 & deca & da \\
\hline \(10^{-1}\) & deci & d \\
\hline \(10^{-2}\) & centi & c \\
\hline \(10^{-3}\) & milli & m \\
\hline \(10^{-6}\) & micro & \(\mu\) \\
\hline \(10^{-9}\) & nano & n \\
\hline \(10^{-12}\) & pico & p \\
\hline \(10^{-15}\) & femto & f \\
\hline \(10^{-18}\) & atto & a \\
\hline
\end{tabular}

\section*{Major compatible unit}
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Symbol of conventional unit & Symbol of SI unit and compatible unit & Conversion value \\
\hline Length & \(\mu\) (micron) & \(\mu \mathrm{m}\) & \(1 \mu=1 \mu \mathrm{~m}\) (micrometer) \\
\hline \multirow[t]{2}{*}{Acceleration} & Gal & \(\mathrm{m} / \mathrm{s}^{2}\) & \(1 \mathrm{Gal}=10^{-2} \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline & G & \(\mathrm{m} / \mathrm{s}^{2}\) & \(1 \mathrm{G}=9.80665 \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline Frequency & c/s, c & Hz & \(1 \mathrm{c} / \mathrm{s}=\mathrm{Hz}\) \\
\hline Revolving speed, Number of revolutions & rpm & \(\mathrm{s}^{-1}\) or \(\mathrm{min}^{-1}\), r/min & \(1 \mathrm{rpm}=1 \mathrm{~min}^{-1}\) \\
\hline Weight & kgt & - & \multirow[t]{2}{*}{Same value} \\
\hline Mass & - & kg & \\
\hline Weight flow rate & kg/s & - & \multirow[t]{2}{*}{Same value} \\
\hline Mass flow rate & - & kg/s & \\
\hline Specific weight & \(\mathrm{kg} / \mathrm{m}^{3}\) & - & \multirow[b]{2}{*}{Same value} \\
\hline Density & - & \(\mathrm{kg} / \mathrm{m}^{3}\) & \\
\hline Specific volume & \(\mathrm{m}^{3} \mathrm{kgf}\) & \(\mathrm{m}^{3} \mathrm{~kg}\) & Same value \\
\hline Load & kgt & N & \(1 \mathrm{kgf}=9.80665 \mathrm{~N}\) \\
\hline \multirow[t]{2}{*}{Force} & kgf & N & \multirow[t]{2}{*}{\(1 \mathrm{kgf}=9.80665 \mathrm{~N}\)
\(1 \mathrm{dyn}=10^{-5} \mathrm{~N}\)} \\
\hline & dyn & N & \\
\hline Moment of force & kgf-m & \(\mathrm{N} \cdot \mathrm{m}\) & \(1 \mathrm{kgf}-\mathrm{m}=9.806 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multirow[t]{6}{*}{Pressure} & \(\mathrm{kg} / \mathrm{cm}^{2}\) & Pa, bar \({ }^{(1)}\) or kgf/cm \({ }^{2}\) & \[
\begin{aligned}
1 \mathrm{~kg} / / \mathrm{cm}^{2} & =9.80665 \times 10^{4} \mathrm{~Pa} \\
& =0.980665 \mathrm{bar}
\end{aligned}
\] \\
\hline & at (Engineering atmospheric pressure) & Pa & \(1 \mathrm{at}=9.80665 \times 10^{4} \mathrm{~Pa}\) \\
\hline & atm (Atmospheric pressure) & Pa & \(1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}\) \\
\hline & mH2O, mAq & Pa & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{mH} \mathrm{H}_{2}=9.80665 \times 10^{3} \mathrm{~Pa} \\
& 1 \mathrm{mmHg}=133.322 \mathrm{~Pa}
\end{aligned}
\]} \\
\hline & mmHg & Pa or \(\mathrm{mmHg}^{(2)}\) & \\
\hline & Torr & Pa & \\
\hline \multirow[t]{2}{*}{Stress} & kgf/mm \({ }^{2}\) & \multirow[t]{2}{*}{Pa or \(\mathrm{N} / \mathrm{m}^{2}\)} & \(1 \mathrm{~kg} / \mathrm{mm}^{2}=9.80665 \times 10^{6} \mathrm{~Pa}\) \\
\hline & & & \(=9.80665 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) \\
\hline \multirow{4}{*}{Elastic modulus} & kgf/cm \({ }^{2}\) & \multirow[t]{2}{*}{Pa or \(\mathrm{N} / \mathrm{m}^{2}\)} & \(1 \mathrm{~kg} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~Pa}\) \\
\hline & & & \(=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}\) \\
\hline & \multirow[t]{2}{*}{kgf/m \({ }^{2}\)} & \multirow[t]{2}{*}{Pa or \(\mathrm{N} / \mathrm{m}^{2}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{kgf} / \mathrm{m}^{2}=9.80665 \mathrm{~Pa}=9.80665 \mathrm{~N} / \mathrm{m}^{2} \\
& 1 \mathrm{kgf} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
\]} \\
\hline & & & \\
\hline \multirow[t]{2}{*}{Energy, Work} & kgf.m & J (joule) & \(1 \mathrm{~kg} \cdot \mathrm{~m}=9.80665 \mathrm{~J}\) \\
\hline & erg & J & \(1 \mathrm{erg}=10^{-7} \mathrm{~J}\) \\
\hline \multirow[t]{2}{*}{Work efficiency, Power} & kgf \(\mathrm{m} / \mathrm{s}\) & W (watt) & \(1 \mathrm{kgf} \cdot \mathrm{m} / \mathrm{s}=9.80665 \mathrm{~W}\) \\
\hline & PS & w & \(1 \mathrm{PS}=0.7355 \mathrm{~kW}\) \\
\hline \multirow[t]{2}{*}{Viscosity Kinetic viscosity} & PP & Pa's & \(1 \mathrm{P}=0.1 \mathrm{~Pa} \cdot \mathrm{~s}\) \\
\hline & St & mm² & \(10^{-2} \mathrm{St}=1 \mathrm{~mm}^{2} / \mathrm{s}\) \\
\hline Thermodynamic temperature & K & K (kelvin) & \(1 \mathrm{~K}=1 \mathrm{~K}\) \\
\hline Temperature interval & deg & \(\mathrm{K}^{(3)}\) & \(1 \mathrm{deg}=1 \mathrm{~K}\) \\
\hline \multirow[t]{7}{*}{\begin{tabular}{c|}
\hline Amount of heat \\
Heat capacity \\
Specific heat, Specific heat capacity \\
Entropy \\
Specific entropy \\
Internal energy (Enthalpy) \\
Specific internal energy (Specific enthalpy)
\end{tabular}} & \multirow[t]{7}{*}{} & \multirow[t]{2}{*}{\(\stackrel{J}{J / K^{(3)}}\)} & \multirow[t]{7}{*}{```
\(1 \mathrm{cal}=4.18605 \mathrm{~J}\)
\(1 \mathrm{cal} /{ }^{\circ} \mathrm{C}=4.18605 \mathrm{~J} / \mathrm{K}\)
\(1 \mathrm{cal} /\left(\mathrm{kgf} \cdot{ }^{\circ} \mathrm{C}\right)=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})\)
\(1 \mathrm{cal} / \mathrm{K}=4.18605 \mathrm{~J} / \mathrm{K}\)
\(1 \mathrm{cal}(\mathrm{kgf} \cdot \mathrm{K})=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})\)
\(1 \mathrm{cal}=4.18605 \mathrm{~J}\)
\(1 \mathrm{cal} / \mathrm{kgf}=4.18605 \mathrm{~J} / \mathrm{kg}\)
```} \\
\hline & & & \\
\hline & & cal/ \((\mathrm{kgf} \cdot \mathrm{K})^{(3)}\) & \\
\hline & & \multirow[t]{2}{*}{\({ }^{J / K}\)} & \\
\hline & & & \\
\hline & & \(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})\) & \\
\hline & & J/kg & \\
\hline Heat flux & cal/h & w & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1 \mathrm{kcal} / \mathrm{h}=1.16279 \mathrm{~W} \\
& 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2}\right)=1.16279 \mathrm{~W} / \mathrm{m}^{2} \\
& 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \\
& 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
\end{aligned}
\]} \\
\hline Heat flux density & call ( \(h \cdot \mathrm{~m}^{2}\) ) & W/m \({ }^{2}\) & \\
\hline Thermal conductivity & call ( \(\mathrm{h} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\) ) & \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})^{(3)}\) & \\
\hline Coefficient of thermal conductivity & \(\mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\) & \(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{k}\right)^{(3)}\) & \\
\hline Intensity of magnetic field & Oe & \(\mathrm{A} / \mathrm{m}\) & \(1 \mathrm{Oe}=10^{3} /(4 \pi) \mathrm{A} / \mathrm{m}\) \\
\hline Magnetic flux & Mx & Wb (weber) & \(1 \mathrm{Mx}=10^{-8} \mathrm{~Wb}\) \\
\hline Magnetic flux density & Gs,G & T (tesla) & \(1 \mathrm{Gs}=10^{-4} \mathrm{~T}\) \\
\hline
\end{tabular}

Note (1) Applicable to liquid pressure. Also applicable to atmospheric pressure of meteorological data, when "bar" is used in international standard. (2) Applicable to scale or indication of blood pressure manometers.
(3) "C" can be substituted for " K ".

\section*{Selecting motor capacity}

\section*{Flow of motor selection}
1. Definition of mechanism to be driven by motor.

Define details of individual mechanical components (ball screw length, lead and pulley diameters, etc.)

\section*{<Typical mechanism>}

Ball screw mechanism


Belt mechanism


Rack \& pinion, etc.


\section*{2. Definition of operating pattern.}

Acceleration/deceleration time, Constant-velocity time, Stop time, Cycle time, Travel distance


Note) Selection of motor capacity significantly varies depending on the operating pattern.
The motor capacity can be reduced if the acceleration/deceleration time and stop time are set as long as possible.

\section*{Calculation of load inertia and inertia ratio}

Calculate load inertia for each mechanical component. (Refer to "General inertia calculation method" described later.)
Divide the calculated load inertia by the inertia of the selected motor to check the inertia ratio.
For calculation of the inertia ratio, note that the catalog value of the motor inertia is expressed as " \(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) ",
4. Calculation of motor velocity

Calculate the motor velocity from the moving distance, acceleration / deceleration time and constant-velocity time.

\section*{5. Calculation of torque}

Calculate the required motor torque from the load inertia, acceleration/deceleration time and constant-velocity time

\section*{6. Calculation of motor}

Select a motor that meets the above 3 to 5 requirements.

\section*{Description on the items related to motor selection}

\section*{1. Torque}
(1) Peak torque

Indicate the maximum torque that the motor requires during operation (mainly in acceleration and deceleration steps). The reference value is \(80 \%\) or less of the maximum motor torque. If the torque is a negative value, a regenerative discharge resistor may be required

\section*{(2) Traveling torque, Stop holding torque}

Indicates the torque that the motor requires for a long time. The reference value is \(80 \%\) or less of the rated motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.

\section*{Traveling torque calculation formula for each mechanism}
\begin{tabular}{|c|c|c|}
\hline Ball screw mechanism & Traveling torque & \[
\mathbf{T}_{\mathbf{f}}=\frac{\mathbf{P}}{2 \pi \eta}(\mu \mathrm{~g} \mathbf{W}+\mathbf{F})
\] \\
\hline  & W : Weight [kg] & \(\eta\) : Mechanical efficiency \\
\hline IIIT & P : Lead [m] & \(\mu\) : Coefficient of friction \\
\hline & F : External force [ N ] & g : Acceleration of gravity \(9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Belt mechanism & Traveling torque & \(\frac{\mathrm{D}}{2 \eta}(\mu \mathrm{~g} \mathbf{W}+\mathbf{F})\) \\
\hline W \(\rightarrow\) & W: Weight [kg] & \(\eta\) : Mechanical efficiency \\
\hline (D) & P : Pulley diameter [m] & \(\mu\) : Coefficient of friction \\
\hline & F : External force [ N ] & g : Acceleration of gravity \(9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]\) \\
\hline
\end{tabular}

\section*{(3) Effective torque}

Indicates a root-mean-square value of the total torque required for running and stopping the motor per unit time The reference value is approx. \(80 \%\) or less of the rated motor torque.
\[
\text { Trms }=\sqrt{\frac{\mathbf{T a}^{2} \times \mathbf{t a}_{\mathrm{a}}+\mathbf{T}^{2} \times \mathrm{tb}_{\mathrm{t}}+\mathbf{T d}^{2} \times \mathbf{t d}}{\mathrm{tc}_{\mathrm{c}}}}
\]
Ta : Acceleration torque \([\mathrm{N} \cdot \mathrm{m}]\)
ta : Acceleration time [s]
tc: Cycle time [s]
Tf: Traveling torque \([\mathrm{N} \cdot \mathrm{m}]\)
tb: Constant-velocity time [s]
Td : Deceleration torque [ \(\mathrm{N} \cdot \mathrm{m}\) ]
td: Deceleration time [s]

\section*{2. Motor velocity}

\section*{Maximum velocity}

Maximum velocity of motor in operation: The reference value is the rated velocity or lower value
When the motor runs at the maximum velocity, you must pay attention to the motor torque and temperature rise. For actual calculation of motor velocity, see "Example of motor selection" described later.

\section*{Selecting motor capacity}

\section*{Description on the items related to motor selection}
3. Inertia and inertia ratio

Inertia is like the force to retain the current moving condition.
Inertia ratio is calculated by dividing load inertia by rotor inertia.
Generally, for motors with 750 W or lower capacity, the inertia ratio should be " 20 " or less. For motors with 1000 W or higher capacity, the inertia ratio should be " 10 " or less
If you need quicker response, a lower inertia ratio is required.
(For example, when the motor takes several seconds in acceleration step, the inertia ratio can be further increased.)
\begin{tabular}{|c|c|c|c|}
\hline Shape & \(J\) calculation formula & Shape & \(J\) calculation formula \\
\hline Disk & \begin{tabular}{l}
\[
\mathbf{J}=\frac{1}{8} \mathbf{W} \mathbf{D}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
D: Outer diameter [m]
\end{tabular} & Hollow cylinder & \begin{tabular}{l}
\[
\mathbf{J}=\frac{1}{8} \mathbf{W}\left(\mathbf{D}^{2}+\mathbf{d}^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
D: Outer diameter [m] \\
d : Inner diameter [m]
\end{tabular} \\
\hline  & \begin{tabular}{l}
\[
\mathbf{J}=\frac{1}{12} \mathbf{W}\left(\mathbf{a}^{2}+\mathbf{b}^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
\(\mathbf{a}, \mathbf{b}, \mathbf{c}\) : Side length [m]
\end{tabular} & Uniform rod & \begin{tabular}{l}
\[
J=\frac{1}{48} W\left(3 D^{2}+4 L^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
D: Outer diameter [m] \\
L : Length [m]
\end{tabular} \\
\hline Straight rod & \begin{tabular}{l}
\[
\mathbf{J}=\frac{1}{3} \mathbf{W} L^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
L : Length [m]
\end{tabular} & Separated rod & \begin{tabular}{l}
\[
\mathbf{J}=\frac{1}{8} \mathbf{W} \mathbf{D}^{2}+\mathbf{W} \mathbf{S}^{2}{ }_{\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]}
\] \\
W: Weight [kg] \\
D : Outer diameter [m] \\
S : Distance [m]
\end{tabular} \\
\hline Reduction gear & \begin{tabular}{l}
Inertia on shaft "a"
\[
\mathbf{J}=\mathrm{J}_{1}+\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)^{2} \mathrm{~J}_{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
\(\mathrm{n}_{1}\) : A rotational speed of a shaft [r/min] \\
n 2 : A rotational speed of b shaft [r/min]
\end{tabular} & & \\
\hline Conveyor & \begin{tabular}{l}
\[
J=\frac{1}{4} W D^{2}\left[k g \cdot \mathrm{~m}^{2}\right]
\] \\
W: Workpiece weight on conveyor [kg] \\
D : Drum diameter [m] \\
* Excluding drum J
\end{tabular} & Ball screw & \begin{tabular}{l}
\[
\mathbf{J}=\mathbf{J} \mathbf{B}+\frac{\mathbf{W} \cdot \mathbf{P}^{2}}{4 \pi^{2}}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
P:Lead [m] \\
JB: Jof ball screw
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
f weight ( \(\mathrm{W}[\mathrm{kg}\) ) is unknown, calculate it with the following formula:
Weight \(W[\mathrm{~kg}]=\) Density \(\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right] \times\) Volume \(V\left[\mathrm{~m}^{3}\right]\)
Density of each material
Iron \(\rho=7.9 \times 10^{3}[\mathrm{~kg} / \mathrm{m}\)
Aluminum \(\rho=2.8 \times 10^{3}[\mathrm{~kg} / \mathrm{m}]\)
Brass \(\rho=8.5 \times 10^{3}[\mathrm{~kg} / \mathrm{m}\)
}

\section*{To drive ball screw mechanism}
1. Example of motor selection for driving ball screw mechanism

Workpiece motor
Ball screw length Ball screw diameter Ball screw lead
\[
W_{A}=10[\mathrm{~kg}]
\] \(\mathrm{B}_{\mathrm{L}}=0.5[\mathrm{~m}]\)

Ball screw efficiency
\(\mathrm{BD}=0.02[\mathrm{~m}]\)

Travel distance 0.3 [m]
Coupling inertia Jc = \(10 \times 10^{-6}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\) (Use manufacturer-specified catalog value, or calculation value.)
2. Running pattern

Acceleration time
Deceleration time
Cycle time
Travel distance \(0.3[\mathrm{~m}]\)

3. Ball screw weigh
\[
\mathrm{Bw}=\rho \times \pi \times\left(\frac{\mathrm{BD}}{2}\right)^{2} \times \mathrm{BL}=7.9 \times 10^{3} \times \pi \times\left(\frac{0.02}{2}\right)^{2} \times 0.5
\]
\[
=1.24[\mathrm{~kg}]
\]
4. Load inertia
\[
\mathrm{JL}=\mathrm{Jc}+\mathrm{JB}+\mathrm{Jw}=\mathrm{Jc}+\frac{1}{8} \mathrm{Bw} \times \mathrm{BD}^{2}+\frac{\mathrm{WA} \cdot \mathrm{BP}^{2}}{4 \pi^{2}}
\]
\[
=0.00001+\left(1.24 \times 0.02^{2}\right) / 8+10 \times 0.02^{2} / 4 \pi^{2}
\]
\[
=1.73 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\]
5. Provisional motor selection

In case of GP series 50 W , gear ratio \(1 / 5\). Permissible load inertia moment \(=3.42 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)

\section*{6. Inertia moment compare}

Permissible load inertia moment \(=3.42 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]>\) Load inertia
\(=1.73 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\) Cleared specification

\section*{7. Calculation of maximum velocity (Vmax)}
\(\frac{1}{2} \times\) Acceleration time \(\times V \max +\) Constant-velocity time \(\times V \max +\frac{1}{2} \times\) Deceleration time \(\times\) Vmax \(=\) Travel distance
\(\frac{1}{2} \times 0.7 \times V \max +1.3 \times V \max +\frac{1}{2} \times 0.7 \times V \max =0.3\)
\(2.0 \times V \max =0.3\)
\(V_{\text {max }}=0.3 / 2.0=0.15[\mathrm{~m} / \mathrm{s}]\)
8. Calculation of motor velocity ( \(\mathrm{N}[\mathrm{r} / \mathrm{min}]\) ) Ball screw lead per resolution: \(\mathrm{Bp}=0.02\) [ m\(]\)
\(\mathrm{N}=0.15 / 0.02=7.5[\mathrm{r} / \mathrm{s}]\)
\(=7.5 \times 60=450[\mathrm{r} / \mathrm{min}]<600[\mathrm{r} / \mathrm{min}]\) (rated rotation speed of GP series 50 W , gear ratio \(1 / 5\) )

\section*{9. Calculation of torque}

Traveling torque \(\quad \mathbf{T f}_{\mathbf{f}}=\frac{\mathbf{B p}}{2 \pi \mathbf{B}_{\boldsymbol{\eta}}}\left(\mu \mathrm{g} \mathbf{W}_{\mathbf{A}}+\mathbf{F}\right)=\frac{0.02}{2 \pi \times 0.9}(0.1 \times 9.8 \times 10+0)\) \(=0.035[\mathrm{~N} \cdot \mathrm{~m}]\)
Acceleration torque \(\quad \mathbf{T a}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time }[\mathrm{s}]}+\) Traveling torque \(=\frac{1.73 \times 10^{-4} \times 2 \pi \times 7.5}{0.7}+0.035\) \(=0.012+0.035=0.047[\mathrm{~N} \cdot \mathrm{~m}]\)

Deceleration torque \(\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time }[\mathrm{s}]}-\) Traveling torque \(=\frac{1.73 \times 10^{-4} \times 2 \pi \times 7.5}{0.7}-0.035\) \(=0.012-0.035=-0.023[\mathrm{~N} \cdot \mathrm{~m}]\)

\section*{Selecting motor capacity}
10. Verification of maximum torque

Acceleration torque \(=\mathbf{T a}\)
\(=0.047[\mathrm{~N} \cdot \mathrm{~m}]<0.71[\mathrm{~N} \cdot \mathrm{~m}]\) (GP series \(50 \mathrm{~W}, 1 / 5\) gear, Permissible torque at output shaft of gear head)
11. Verification of effective torque
```

Trms $=\sqrt{\frac{\mathbf{a}^{2} \times \mathbf{t a}+\mathbf{T} \mathbf{f}^{2} \times \mathbf{t b}+\mathbf{T} \mathbf{d}^{2} \times \mathbf{t d}}{\mathbf{t} \mathbf{c}}}$
$=\sqrt{\frac{0.047^{2} \times 0.7+0.035^{2} \times 1.3+(-0.023)^{2} \times 0.7}{4}}$
$=0.030[\mathrm{~N} \cdot \mathrm{~m}]<0.71[\mathrm{~N} \cdot \mathrm{~m}]$ (GP series $50 \mathrm{~W}, 1 / 5$ gear, Permissible torque at output shaft of gear head)

```
12. Load torque, load inertia moment are cleared specification.

\section*{Example of motor selection for timing belt mechanism}

\section*{1.Mechanism}

Workpiece weight
Pulley diameter
Pulley weight
Mechanical efficiency
Coupling inertia

\section*{\(W_{A}=2[\mathrm{~kg}]\) (including belt)}
\(\mathrm{PD}=0.05[\mathrm{~m}]\)
P \(=0.5[\mathrm{~kg}]\) (Use manufacturer-specified catalog value, or calculation value.)
\(\mathrm{B} \eta=0.8\)
Jc \(=\mathbf{0}\) (Direct connection to motor shaft)

2. Running pattern

Acceleration time
Constant-velocity time
Deceleration time
Cycle time
\(\mathrm{tb}=1.0[\mathrm{~s}]\)
\(\mathrm{d}=1.0[\mathrm{~s}]\) \(\mathrm{td}=1.0[\mathrm{~s}]\) tc \(=4\) [s
Travel distance \(1[\mathrm{~m}]\)
3. Load inertia
\(\mathrm{JL}=\mathrm{Jc}+\mathrm{JB}+\mathrm{JP}\)
\(=\mathrm{Jc}+\frac{1}{4} \mathbf{W A}_{\mathrm{A}} \times \mathrm{PD}^{2}+\frac{1}{8} \mathbf{W} \times \mathbf{P D}^{2} \times 2\)
\(=0+\frac{1}{4} \times 2 \times 0.05^{2}+\frac{1}{8} \times 0.5 \times 0.05^{2} \times 2\)
\(=0.00156=15.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)

\section*{4. Provisional motor selection}

In case of GP series 50 W , gear ratio \(1 / 15\). Permissible load inertia moment \(=30.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)

\section*{5. Inertia moment compared}
\(30.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]>15.6-10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)

\section*{6. Calculation of maximum velocity (Vmax)}
\(\frac{1}{2} \times\) Acceleration time \(\times\) Vmax + Constant-velocity time \(\times\) Vmax \(+\frac{1}{2} \times\) Deceleration time \(\times\) Vmax \(=\) Travel distance
\(\frac{1}{2} \times 1.0 \times \mathrm{Vmax}+1.0 \times \mathrm{Vmax}+\frac{1}{2} \times 1.0 \times \mathrm{Vmax}=1\)
\(2.0 \times V \max =1\)
\(V \max =1 / 2.0=0.5[\mathrm{~m} / \mathrm{s}]\)
7. Calculation of motor velocity ( \(\mathrm{N}[\mathrm{r} / \mathrm{min}]\) )

A single rotation of pulley : \(\pi \times \mathrm{PD}=0.157[\mathrm{~m}]\)
\(\mathrm{N}=0.5 / 0.157=3.18[\mathrm{r} / \mathrm{s}]\)
\(=3.18 \times 60=191[r / \mathrm{min}]<200[\mathrm{r} / \mathrm{min}]\) (rated rotation speed of GP series 50 W , gear ratio \(1 / 15\) )

\section*{8. Calculation of torque}
\[
\begin{aligned}
& \text { Traveling torque } \quad \mathbf{T f}_{\mathbf{f}}=\frac{\mathrm{PD}}{2 \eta}(\mu \mathrm{gW} \mathbf{A}+\mathbf{F})=\frac{0.05}{2 \times 0.8}(0.1 \times 9.8 \times 2+0) \\
& =0.061[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Acceleration torque } \quad \mathbf{T a}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time }[\mathrm{s}]}+\text { Traveling torque } \\
& =\frac{15.6 \times 10^{-4} \times 2 \pi \times 3.18}{1.0}+0.061 \\
& =0.031+0.061=0.092[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Deceleration torque } \quad \mathrm{T}_{\mathrm{d}}=\frac{\mathrm{JL} \times 2 \mathrm{mN}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time }[\mathrm{s}]} \text { - Traveling torque }
\end{aligned}
\]
\[
\begin{aligned}
& =\frac{15.6 \times 10^{-4} \times 2 \pi \times 3.18}{1.0}-0.061 \\
& =0.031-0.061=-0.03[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
\]

\section*{9. Verification of maximum torqu}

Acceleration torque
\(\mathrm{Ta}=0.092[\mathrm{~N} \cdot \mathrm{~m}]<2.2[\mathrm{~N} \cdot \mathrm{~m}]\) (GP series \(50 \mathrm{~W}, 1 / 15\) gear, Permissible torque at output shaft of gear head )

\section*{10. Verification of effective torque}
\[
\begin{aligned}
\text { Trms } & =\sqrt{\frac{\mathbf{T a}^{2} \times \mathbf{t a}+\mathbf{T} \mathbf{f}^{2} \times \mathbf{t b}+\mathbf{T} \mathbf{d}^{2} \times \mathbf{t d}}{\mathbf{t} \mathbf{d}}} \\
& =\sqrt{\frac{0.092^{2} \times 1.0+0.061^{2} \times 1.0+(-0.03)^{2} \times 1.0}{4}} \\
& =0.057[\mathrm{~N} \cdot \mathrm{~m}]<2.2[\mathrm{~N} \cdot \mathrm{~m}] \text { (GP series } 50 \mathrm{~W}, 1 / 15 \text { gear, Permissible torque at output shaft of gear head) }
\end{aligned}
\]

\footnotetext{
11. A GP series \(50 \mathrm{~W}, 1 / 15\) gear selected by following the above procedure will cause no problem.
}

\section*{1. Driven mechanism and running data}
\begin{tabular}{|c|c|c|c|}
\hline 1) & Travel distance of the work load per one cycle & \(\ell\) 1: & mm \\
\hline 2) & Cycle time & to: & s \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the work load
Total weight of the work load 9) and the table
10) Power supply voltage
11) Diameter of the ball screw
12) Total length of the ball screw
13) Lead of the ball screw
\begin{tabular}{l}
\begin{tabular}{|cr|}
\hline \(\mathrm{ta}:\) & s \\
\hline \(\mathrm{td}:\) & s \\
\hline \(\mathrm{ts}:\) & s \\
\hline \(\mathrm{V}:\) & \(\mathrm{mm} / \mathrm{s}\) \\
\hline \(\mathrm{F}:\) & N \\
\hline \hline \begin{tabular}{|rr|}
\hline\(\pm\) & mm \\
\hline \(\mathrm{WA}:\) & kg \\
\hline & V \\
\hline & mm \\
\hline & mm \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Request for motor selection II : Timing pulley + Ball screw drive}

\section*{1. Driven mechanism and running data}
1) Travel distance of the work load
per one cycle per one cycle
2) Cycle time
15) Diameter of the pulley
16) Weight of the pulley
\begin{tabular}{|lr|lr|} 
& \multicolumn{2}{c|}{ Motor side } & \multicolumn{2}{c|}{ Ball screw side } \\
\begin{tabular}{|lrlr|}
\hline \(\mathrm{D}_{1}:\) & mm & \(\mathrm{D}_{2}:\) & mm \\
\hline \(\mathrm{W}_{1}:\) & kg & \(\mathrm{W}_{2}:\) & kg \\
\hline
\end{tabular}
\end{tabular}
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
) Positioning accuracy of the
work load
Total weight of the work load and the table
10) Power supply voltage
11) Diameter of the ball screw
12) Total length of the ball screw
13) Lead of the ball screw
14) \(\begin{aligned} & \text { Traveling direction } \\ & \text { (horizontal, vertical etc. }\end{aligned}\)
\begin{tabular}{|c|c|}
\hline ta: & s \\
\hline td: & s \\
\hline ts: & s \\
\hline V : & \(\mathrm{mm} / \mathrm{s}\) \\
\hline F: & N \\
\hline \(\pm\) & mm \\
\hline WA: & kg \\
\hline & v \\
\hline & mm \\
\hline & mm \\
\hline & mm \\
\hline
\end{tabular}
\begin{tabular}{lll|} 
17) Width of the pulley & \(\mathrm{L} 1:\) & mm \\
18) Material of the pulley & \\
& \\
19) Weight of the belt & Wм: & kg \\
\hline
\end{tabular}
Running pattern

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)
\begin{tabular}{rl|}
\hline & \\
& \begin{tabular}{ll}
\hline\(\frac{\text { Company name : }}{\text { Department/Section : }}\) \\
\hline \begin{tabular}{ll} 
Name : \\
\hline Address : \\
\hline\(\frac{\text { Tel : }}{\text { Fax : }}\) \\
\hline E-mail address: \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}


\section*{1. Driven mechanism and running data}
\begin{tabular}{l|lr|} 
1) \begin{tabular}{l} 
Travel distance of the work load \\
per one cycle \\
\cline { 2 - 3 } \\
2) \\
1:
\end{tabular} & mm \\
\hline Cycle time & to: & s \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the
8) work load
9) Total weight of the work load
10) Power supply voltage
11) Weight of the belt
12) Diameter of the driving pulley
13) Total weight of the pulley
\begin{tabular}{|c|c|}
\hline ta: & s \\
\hline td: & s \\
\hline ts: & s \\
\hline V: & mm/s \\
\hline F: & N \\
\hline \(\pm\) & mm \\
\hline \(\mathrm{W}_{\mathrm{A}}\) : & kg \\
\hline & V \\
\hline Wм: & kg \\
\hline D 1 : & mm \\
\hline \(\mathrm{W}_{1}\) : & kg \\
\hline
\end{tabular}
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)
\begin{tabular}{rl|}
\hline 5 & \\
& \begin{tabular}{ll}
\hline Company name : \\
\hline Department/Section : \\
\hline Name : \\
\hline Address : \\
\hline Tel : \\
\hline Fax : \\
E-mail address: \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Request sheet for motor selection}

Request for motor selection IV : Timing pulley + Belt drive

\section*{1. Driven mechanism and running data}
\begin{tabular}{|c|c|c|}
\hline 1) Travel distance of the work load per one cycle & \(\ell 1\) : & mm \\
\hline 2) Cycle time & to: & s \\
\hline
\end{tabular}
\begin{tabular}{l|ll|lll|} 
& \multicolumn{2}{c}{ Motor side } & \multicolumn{2}{c}{ Belt side } \\
\cline { 2 - 6 } & 16) Diameter of the pulley & \(\mathrm{D}_{3}:\) & mm & \(\mathrm{D}_{4}:\) & mm \\
\cline { 2 - 6 } & & & & & \\
\hline
\end{tabular} 17) Weight of the pulley \begin{tabular}{llllll} 
& \(\mathrm{W}_{3}:\) & kg & \(\mathrm{W}_{4}:\) & kg \\
\hline
\end{tabular}
(Fill in items 3 ) and 4 ) if required.)
\begin{tabular}{|c|c|c|c|}
\hline 3) & Acceleration time & ta: & s \\
\hline 4) & Deceleration time & td: & s \\
\hline 5) & Stopping time & ts: & s \\
\hline 6) & Max. velocity & V : & mm/s \\
\hline 7) & External force & F: & N \\
\hline 8) & Positioning accuracy of the work load & \(\pm\) & mm \\
\hline 9) & Total weight of the work load & \(\mathrm{W}_{\mathrm{A}}\) : & kg \\
\hline 10) & Power supply voltage & & V \\
\hline 11) & Weight of motor side belt & \(\mathrm{W}_{\mathrm{m}}\) : & kg \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Motor side} & \multicolumn{2}{|c|}{Belt side} \\
\hline 12) Diameter of the pulley & D1: & mm & \(\mathrm{D}_{2}\) : & mm \\
\hline 13) Weight of the pulley & \(\mathrm{W}_{1}\) : & kg & \(\mathrm{W}_{2}\) : & kg \\
\hline
\end{tabular}
(or item 14) and 15))
14) Width of the belt

L1:
mm
15) Material of the pulley \(\square\)
(or item 18) and 19))

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)
\begin{tabular}{|l|}
\hline \\
\\
\begin{tabular}{ll}
\hline Company name : \\
\hline Department/Section : \\
\hline Name : \\
\hline Address : \\
\hline Tel : \\
\hline Fax : \\
\hline E-mail address: \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Request for motor selection VI : Timing pulley + Turntable drive}

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)
\(\square\)

\section*{1. Driven mechanism and running data}
\begin{tabular}{l|ll|} 
& \multicolumn{1}{l}{ Travel distance of the work load } & di: \\
per one cycle & deg \\
2) Cycle time & to: & s \\
\hline
\end{tabular}
2) Cycle time

\begin{tabular}{l|lrl} 
3) Acceleration time & ta: & s \\
18) \\
4) Deceleration time & \(\mathrm{td}:\) & s & 19) \\
5) Stopping time & \(\mathrm{ts}:\) & s & 20)
\end{tabular}
6) Max. rotational speed of the table
\begin{tabular}{|cc|}
\hline \(\mathrm{v}:\) & \(\mathrm{deg} / \mathrm{s}\) \\
\hline v & \\
\hline
\end{tabular}
7) Positioning accuracy of the
8) Weight of one work load
9) Driving radius of the center of wity of the work
10) Diameter of the table
11) Mass of the table
12) Diameter of the table support
13) Power supply voltage
\begin{tabular}{|c|c|}
\hline V : & r/s \\
\hline \(\pm\) & deg \\
\hline WA: & kg \\
\hline R1: & mm \\
\hline \(\mathrm{D}_{1}\) : & mm \\
\hline \(\mathrm{W}_{1}\) : & kg \\
\hline \(\mathrm{T}_{1}\) : & mm \\
\hline
\end{tabular}
14) Dimension of the work load
15) Number of work loads
\begin{tabular}{ll|ll|} 
& \multicolumn{1}{c}{ (Prism) } & \multicolumn{2}{c}{ (Cylinder) } \\
\hline a: & mm & a: & mm \\
\hline b: & mm & b: & mm \\
\hline c: & mm & c: & mm \\
\hline & & & \\
\hline & & & pcs \\
\hline
\end{tabular}
16) Diameter of the pulley
17) Weight of the pulley Motor side Turntable side
(or item 18) and 19))
18) Width of the pulley
19) Material of the pulley
\begin{tabular}{|lr|}
\hline L1: & mm \\
\hline \\
\hline & \\
\hline Wм: & kg \\
\hline
\end{tabular}
\begin{tabular}{|lr|lr|}
\multicolumn{2}{c|}{ Motor side } & \multicolumn{2}{c|}{ Turntable side } \\
\hline \(\mathrm{D}_{2}:\) & mm & \(\mathrm{D}_{3}:\) & mm \\
\hline \(\mathrm{W}_{2}:\) & kg & \(\mathrm{W}_{3}:\) & kg \\
\hline
\end{tabular}

Weight of the belt
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Company name : \\
Department/Section : \\
\hline Name : \\
\hline Address : \\
\hline Tel : \\
\hline Fax : \\
\hline E-mail address: \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Request sheet for motor selection}

\section*{Request for motor selection VII : Roller feed drive}

\section*{1. Driven mechanism and running data}
\begin{tabular}{l|lr|} 
& \multicolumn{1}{l}{\begin{tabular}{l} 
Travel distance of the work load \\
per one cycle
\end{tabular}} & \(\ell_{1}\) : \\
& mm \\
2) Cycle time & to: & s \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External pulling force
8) Positioning accuracy of the
8) work load
9) Number of rollers
10) Power supply voltage
11) Diameter of the roller
12) Mass of the roller
\begin{tabular}{|c|c|}
\hline ta: & s \\
\hline td: & s \\
\hline ts: & s \\
\hline v: & mm/s \\
\hline F: & N \\
\hline \(\pm\) & mm \\
\hline & pcs \\
\hline & v \\
\hline \(\mathrm{D}_{1}\) : & mm \\
\hline \(\mathrm{W}_{1}\) : & kg \\
\hline
\end{tabular}

(or item 13) and 14))
13) Width of the roller

L 1 :
mm
14) Material of the roller \(\square\)

\section*{Request sheet for motor selection}

\section*{Request for motor selection VIII : Driving with Rack \& Pinion}

\section*{1. Driven mechanism and running data}
\begin{tabular}{l|lr|} 
& \multicolumn{1}{l}{ Travel distance of the work load } & \(\ell_{1}:\) \\
1) \\
per one cycle & mm \\
2) Cycle time & to: & s \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
\begin{tabular}{|c|c|c|c|}
\hline 3) & Acceleration time & ta: & s \\
\hline 4) & Deceleration time & td: & s \\
\hline 5) & Stopping time & ts: & s \\
\hline 6) & Max. velocity & V: & mm/s \\
\hline 7) & External force & F: & N \\
\hline 8) & Positioning accuracy of the & \(\pm\) & mm \\
\hline 9) & Total weight of the work load & \(\mathrm{W}_{\mathrm{A}}\) : & kg \\
\hline 10) & Power supply voltage & & V \\
\hline 11) & Diameter of the pinion & \(\mathrm{D}_{3}\) : & mm \\
\hline 12) & Mass of the pinion & \(\mathrm{W}_{3}\) : & kg \\
\hline 13) & Traveling direction (horizontal, vertical, etc.) & & \\
\hline
\end{tabular}


2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

\section*{Conformance to international safety standards}

\section*{Conformance to international standards}

\section*{EC Directives}

The EC directives apply to all such electronic products as those having specific functions and directly sold to general consumers in EU countries. These products are required to meet the EU unified standards and to be furnished with CE marking Our brushless motor and brushless amplifier meet the EC Directives for Low Voltage Equipment so that the machine or equipment comprising our brushless motor and brushless amplifier can meet relevant EC Directives

\section*{Conformity to UL Standards}

Observe the following conditions of (1) and (2) to make the system conform to UL508C (E164620)
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1.
(e.g. Install in the control box with IP54 enclosure.)
(2) Make sure to install a circuit breaker or fuse which are UL recognized (Listed (4L) marked) between the power supply and the noise filter.
Use a copper cable with temperature rating of \(75^{\circ} \mathrm{C}\) or higher.

\section*{EMC Directives}

Our brushless motor and brushless amplifier can meet EMC Directives and related standards. However, to meet these equirements, the systems must be limited with respect to configuration and other aspects, e.g. the installation and some special wiring conditions must be met. This means that in some cases machines and equipment comprising our brushiess motor and brushless amplifier may not satisfy the requirements for wiring and grounding conditions specified by the EMC Directives. Therefore, conformance to the EMC Directives (especially the requirements for emission noise and noise terminal voltage) should be examined based on the final products that include our system.
\begin{tabular}{|c|c|c|c|}
\hline & & Applicable standards & Installation condition \\
\hline UL & \begin{tabular}{l}
UL1004 \\
UL508C
\end{tabular} & \begin{tabular}{l}
Standard for electric motor \\
Standard for electric converter equipment
\end{tabular} & \multirow[t]{2}{*}{Class I equipment Pollution degree 2 SCCR \({ }^{* 1}\)} \\
\hline \[
\begin{gathered}
\text { CSA } \\
\text { (c-UL) }
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { C22.2 No. } 14 \\
& \text { C22.2 No. } 100
\end{aligned}
\] & Industrial control equipment. Standard for electric motor & \\
\hline CE & \begin{tabular}{l}
EN61800-5-1 \\
EN60034-1 \\
EN60034-5 \\
EN61800-3 \\
EN55011 \\
EN61000-6-2
\end{tabular} & \begin{tabular}{l}
Adjustable speed electrical power drive systems. \\
- Safety requirements. Electrical, thermal and energy \\
Standard for rotary electric machine (low voltage directive) \\
Standard for rotary electric machine (Iow voltage directive) \\
Adjustable speed electrical power drive systems. \\
- EMC requirements and specific test methods \\
Radio interference wave characteristics of industrial, scientific, and medical high-frequency equipment \\
Standards for immunity in industrial environment (EMC directive)
\end{tabular} & \begin{tabular}{l}
Overvoltage category II \\
Class I equipment \\
Pollution degree 2 \\
Group 1 \\
Class A \\
Category III \\
2nd enviroment
\end{tabular} \\
\hline ccc & GB12350 & Motor safety standard & \\
\hline KC & Radio Waves Act (South Korea) (KC) \({ }^{2}\) & Class A Instrument (commercial broadcast communications equipment) & - \\
\hline
\end{tabular}
* 1 SCCR: Symmetrical current 5,000 Arms, Max. 240 V
moter provided.
Motor over-load-temperature protection shall be provided at the final installation upon required by the NEC (National Electric Code).
*2 Information related to the Korea Radio Law
This brushless amplifier is a Class A commercial broadcasting radio wave generator not designed for home use. The user and dealer should be aware of this fact.
A 급 기기 (업무용 방송통신기자재)
이 기기는 업무용(A 급) 전자파적합기기로서 판매자
또는 사용자는 이 점을 주의하시기 바라며, 가정외의
지역에서 사용하는 것을 목적으로 합니다.
( 대상기종 : Brushless Amplifier)

\section*{Configuration of peripheral equipment}
\begin{tabular}{|c|l|}
\hline Power supply & \begin{tabular}{l} 
- 100 V system: Single phase \(100 \mathrm{~V} \pm 10 \%\) to \(120 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
200 V system: Single/3-phase \(200 \mathrm{~V} \pm 10 \%\) to \(240 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
- Use the equipment under the environment of overvoltage category II specified by IEC60664-1. \\
In order to obtain overvoltage category III, insert a transformer conforming to EN standard or IEC \\
standard to the input of brushless motor. \\
- Use an electric wire size suitable to EN60204-1.
\end{tabular} \\
\hline \begin{tabular}{c} 
MCCB \\
(breaker) \\
Fuse
\end{tabular} & \begin{tabular}{l} 
Be sure to connect a specified MCCB certified by IEC standard and UL, or a fuse certified by UL \\
between power supply and noise filter. Observance of this condition allows conformance with \\
UL508C (file No. E164620) .
\end{tabular} \\
\hline Noise filter & \begin{tabular}{l} 
When installing one noise filter at the power supply for more than one brushless motor used, contact \\
the manufacturer of noise filter.
\end{tabular} \\
\hline Surge absorber & \begin{tabular}{l} 
Install a surge absorber on the primary side of noise filter. However, in performing the voltage \\
resistance test of machine and equipment, be sure to remove the surge absorber; otherwise, the \\
surge absorber may be ruptured.
\end{tabular} \\
\hline Grounding & \begin{tabular}{l} 
Be sure to connect the grounding Terminal of brushless amplifier and protective grounding wire (PE) \\
of system for preventing electric shock. Do not tighten the grounding wires together but connect them \\
individually.
\end{tabular} \\
\hline
\end{tabular}

Wiring of peripheral equipment
Ferrite core (Noise filter for signal line)
option DVOP1460 ('OQty: 4 ) (part No.: ZCAT3035-1330/DKK Corp.)


Reactor core (Recommended components)

\begin{tabular}{|c|c|c|}
\hline Current & \begin{tabular}{c}
100 kHz \\
\((\mu \mathrm{H})\)
\end{tabular} & \begin{tabular}{c} 
Core \\
thickness
\end{tabular} \\
\hline 35 A & \(9.9 \pm 3\) & 24 mm \\
\hline
\end{tabular}
[Unit: mm]
List of compatible peripheral equipment
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Part name } & \begin{tabular}{c} 
Optional parts \\
number (option)
\end{tabular} & \begin{tabular}{c} 
Manufacturer's \\
parts number
\end{tabular} & Qty. & Manufacturer & \begin{tabular}{c} 
Reference \\
page
\end{tabular} \\
\hline Noise filter (single phase 100 V, 200 V) & DVOP4170 & SUP-EK5-ER-6 & 1 & & \\
\hline Noise filter (3-phase) & DVOPM20042 & 3SUP-HU10-ER-6 & 1 & \multirow{2}{*}{ OKAYA ELECTRIC } & \\
\hline Surge absorber (single phase 100 V, 200 V) & DVOP4190 & R•A•V-781BWZ-4 & 1 & \multirow{2}{*}{ IND. CO., LTD. } & P.67 \\
\hline Surge absorber (3-phase) & DVOP1450 & R•A•V-781BXZ-4 & 1 & & \\
\hline Noise filter for control signals & DVOP1460 & ZCAT3035-1330 & 4 & \multirow{2}{*}{ TDK Corporation } & \\
\hline Reactor core & - & RJ8035 & - & KK-CORP.CO.JP & P.94 \\
\hline
\end{tabular}

\section*{Table of model numbers and options}

GV series
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Power } \\
& \text { supply }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Rated } \\
& \text { rotation } \\
& \text { speed } \\
& \text { (r/min) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { output } \\
& \text { (W) }
\end{aligned}
\] & Motor & Gear head (Note 1) & Brushless amplifier & \[
\begin{gathered}
\text { Brushless } \\
\text { amplifier } \\
\binom{\text { supplied with }}{\text { power cable }}
\end{gathered}
\] & \[
\begin{aligned}
& \text { External } \\
& \text { regenerative } \\
& \text { resistor }
\end{aligned}
\] & Noise filter & Surge absorber & Reactor & Motor extension cable & \[
\begin{gathered}
\text { Power } \\
\text { supply } \\
\text { connector } \\
\text { kit }
\end{gathered}
\] & Console & Console A connection cable & \[
\begin{gathered}
\text { Digital } \\
\text { key pad }
\end{gathered}
\] & \[
\begin{gathered}
\text { Digital } \\
\text { key pad } \\
\text { connection } \\
\text { cable }
\end{gathered}
\] & \[
\begin{aligned}
& \text { External } \\
& \text { speed } \\
& \text { setter }
\end{aligned}
\] & Control signal cable & \[
\begin{gathered}
\text { I/O } \\
\text { connector } \\
\text { kit }
\end{gathered}
\] & Panel
connector
kit & \[
\begin{gathered}
\text { PC } \\
\text { connection } \\
\text { cable } \\
\text { (Nole 4) }
\end{gathered}
\] & Noise filter signal line & \[
\begin{aligned}
\text { rin rail } \\
\text { attachment } \\
\text { unit }
\end{aligned}
\] \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \text { Single } \\
& \text { phase } \\
& 100 \mathrm{~V}
\end{aligned}
\]} & \multirow[t]{12}{*}{} & \multicolumn{9}{|l|}{\multirow[t]{12}{*}{}} & \multirow{12}{*}{\begin{tabular}{l}
1 m DVOPQ1000110 \\
3 m DVOPQ1000130 5 m DVOPQ1000150 10 m DV0PQ10001A
\end{tabular}} & \multirow{12}{*}{DVOP8870} & \multirow{12}{*}{DVOP3500} & \multirow{12}{*}{\begin{tabular}{l}
1 m DVOPM2006910 \\
3 m DVOPM2006930 \\
5 m DVOPM2006950
\end{tabular}} & \multirow{12}{*}{DVOP3510} & \multirow{12}{*}{\begin{tabular}{l}
1 m
DVOP383 \\
3 m DVOP38330 \\
5 m DVOP38350
\end{tabular}} & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & 2 m & & & \({ }^{1.5 \mathrm{~m}}\) & & \\
\hline & & & & & & & & & & & & & & & & & DVOPM20078 & & DU0PM2007 & dvapsho & & DVoP1460 & DVop3811 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline Single
phase/ & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 3-phase & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}


GP series


Note 1) A ingure representing reduction ratio in \(\square\)
Note 2) Refer to p. 74 for a power supply connecting cable.
his part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.
Sufix of " \(O\) " in the motor model represents shape of shaft. For more information, please refer to \(p .27\).
(Note 4) When connecting PC, the PC connection cable (DVOP4140) and the Digital key pad connection cable (DVOP383*0) are required
fyour PC does not have RS232 port, use RS232-USB converter.
Be sure to
- Be sure to use a set of matched components (series, power source, capacity, output, etc.)

Index

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model No. & Specifications & Page & Model No. & Specifications & & Page \\
\hline \multicolumn{3}{|l|}{MX8G (For GV series gear head)} & \multicolumn{4}{|l|}{MY9G (For GV series gear head)} \\
\hline Mx8G100B & 80 mm sq . Reduction ratio: 1/100 & 17,23 & MY9G75B & 90 mm sq . Hinge atached Re & Reduction ratio: 1/75 & 19,21,23 \\
\hline MX8G10B & 80 mmsq . Reduction ratio: 1/10 & 17,23 & мY9G90в & 90 mm sq . Hinge atached Re & Reduction ratio: 190 & 19,21,23 \\
\hline MX8G12.5B & 80 mm sq . Reduction ratio: 1/12.5 & 17,23 & MY9G9в & 90 mm sq . Hinge attached Redres & Reduction ratio: 19 & 19,21,23 \\
\hline mX8G120B & 80 mm sq . Reduction ratio: \(1 / 120\) & 17,23 & & & & \\
\hline mX8G150B & 80 mm sq . Reduction ratio: \(1 / 150\) & 17,23 & \multicolumn{4}{|l|}{MZ9G (For GV series gear head)} \\
\hline M \(\times 8 \mathrm{G15B}\) & 80 mm sq. Reduction ratio: 1/15 & 17,23 & MZ9G100B & 90 mm sq . Hinge not atached & d Reduction ratio: 1/100 & 19,21,23 \\
\hline M×8G180B & 80 mm sq . Reduction ratio: \(1 / 180\) & 17,23 & MZ9G10B & \(90 \mathrm{~mm} \mathrm{sa}\). . Hinge not atached & d Reduction ratio: 1/10 & 19,21,23 \\
\hline MX8G18B & 80 mm sq . Reduction ratio: 1/18 & 17,23 & MZ9G12.5B & 90 mm sq . Hinge not atached & d Reduction ratio: 1/12.5 & 19,21,23 \\
\hline MX8G20B & 80 mmsq . Reduction ratio: 1120 & 17,23 & MZ9G120B & 90 mm sa . Hinge not atached & d Reduction ratio: 1 1/20 & 19,21,23 \\
\hline MX8G25B & 80 mm sq . Reduction ratio: \(1 / 25\) & 17,23 & MZ9G150B & 90 mm sq . Hinge not attached & d Reduction ratio: 1/150 & 9,21,23 \\
\hline мх8G3.6B & 80 mm sa . Reduction ratio: 113.6 & 17,23 & MZ9G15B & \(90 \mathrm{~mm} \mathrm{sa}\). . Hinge not attached & d Reduction ratio: 1/15 & 19,21,23 \\
\hline мх8G30в & 80 mm sq . Reduction ratio: \(1 / 30\) & 17,23 & MZ9G180B & 90 mm sq . Hinge not atached & d Reduction ratio: \(1 / 180\) & 19,21,23 \\
\hline мхвс36в & 80 mm sq . Reduction ratio: \(1 / 36\) & 17,23 & MZ9G18B & 90 mm sq . Hinge not atached & d Reduction ratio: 1/18 & 19,21,23 \\
\hline мх8Gзв & \(80 \mathrm{~mm} \mathrm{sq}\). . Recuction raio: \(1 / 3\) & 17,23 & MZ9G200B & 90 mm sq . Hinge not atached & d Reduction ratio: 1/200 & 19,21,23 \\
\hline MX8G50B & 80 mm sq . Reduction ratio: 150 & 17,23 & MZ9G20B & 90 mm sq . Hinge not atached & d Reduction ratio: 120 & 19,21,23 \\
\hline мх8G5b & \(80 \mathrm{~mm} \mathrm{sq}\). . Recuction ratio: \(1 / 5\) & 17,23 & Mz9G25B & \(90 \mathrm{~mm} \mathrm{sa}\). . Hinge not atached & d Reduction ratio: 1/25 & 19,21,23 \\
\hline MX8G60B & 80 mm sq . Reduction ratio: 1/60 & 17,23 & MZ9G3.6B & 90 mm sq . Hinge not attached & deeduction ratio: 13.6 & 19,21,23 \\
\hline MX8G6B & \(80 \mathrm{~mm} \mathrm{sq}\). . Recuction ratio: \(1 / 6\) & 17,23 & Mz9G30B & 90 mm sq . Hinge not atached & d Reduction ratio: 1 130 & 19,21,23 \\
\hline MX8G7.5B & \(80 \mathrm{~mm} \mathrm{sq} .\mathrm{Reduction} \mathrm{ratio:} 17.5\) & 17,23 & Mz9G36B & 90 mm sq . Hinge not atached & d Reduction ratio: \(1 / 36\) & 19,21,23 \\
\hline Mx8G75B & 80 mm sq . Reduction ratio: 1775 & 17,23 & мд9G3в & 90 mm sq . Hinge not atached & d Reduction ratio 1/3 & 19,21,23 \\
\hline мх8¢90в & \(80 \mathrm{~mm} \mathrm{sa}\). . Reduction ratio: 190 & 17,23 & Mz9G50B & \(90 \mathrm{~mm} \mathrm{sa}\). . Hinge not atached & d Reduction ratio: 1 150 & 19,21,23 \\
\hline \multirow[t]{2}{*}{M×8G9B} & \multirow[t]{2}{*}{\(80 \mathrm{~mm} \mathrm{sq} .\mathrm{Recuction} \mathrm{ratio:} 1 / 9\)} & 17,23 & MZ9G5B & 90 mm sq . Hinge not atached & d Reduction ratio: \(1 / 5\) & 19,21,23 \\
\hline & & & MZ9G60B & 90 mm sa . Hinge not atached & d Reduction ratio 1/60 & 19,21,23 \\
\hline \multicolumn{3}{|l|}{MY9G (For GV series gear head)} & mz9G6B & 90 mm sq . Hinge not attached & d Reduction ratio: 1/6 & 19,21,23 \\
\hline MY9G100B & 90 mm sq . Hinge atached Reduction ratio: \(1 / 100\) & 19,21,23 & MZ9G7.5B & \(90 \mathrm{~mm} \mathrm{sa}\). . Hinge not attached & Reduction ratio 17.5 & 19,21,23 \\
\hline MY9G10B & 90 mms s. Hinge attached Reduction raio: 1/10 & 19,21,23 & Mz9G75B & \(90 \mathrm{~mm} \mathrm{sq}\). . Hinge not attached & d Reduction ratio: 175 & 19,21,23 \\
\hline MY9G12.5B & 90 mm sq. Hinge atached Reduction ratio: \(1 / 12.5\) & 19,21,23 & Mz9G90B & 90 mm sq. Hinge not attached & d Reduction ratio: 190 & 19,21,23 \\
\hline MY9G120B & 90 mmsq . Hinge atached Reduction ratio: 1/120 & 19,21,23 & Mz9G9B & \(90 \mathrm{~mm} \mathrm{sa}\). . Hinge not atached & d Reduction ratio: \(1 / 9\) & 19,21,23 \\
\hline MY9G150B & 90 mm sq . Hinge atached Reduction ratio: 1/150 & 19,21,23 & & & & \\
\hline MY9G15B & 90 mmsq . Hinge attached Reduction raio: 1/15 & 19,21,23 & & & & \\
\hline MY9G180B & 90 mm sq. Hinge atached Reduction ratio: \(1 / 180\) & 19,21,23 & & & & \\
\hline MY9G18B & 90 mm sq . Hinge attached Reduction raio: 1/18 & 19,21,23 & & & & \\
\hline MY9G200B & 90 mm sq . Hinge atached Reduction ratio: \(1 / 200\) & 19,21,23 & & & & \\
\hline MY9G20B & 90 mmsq . Hinge attached Reduction ratio: 1/20 & 19,21,23 & & & & \\
\hline MY9G25B & 90 mmsq . Hinge attached Reduction raio: 1/25 & 19,21,23 & & & & \\
\hline MY9G3.6B & 90 mm sq . Hinge atached Reduction ratio: 13.6 & 19,21,23 & & & & \\
\hline MY9G30B & 90 mm sq. Hinge attached Reduction ratio: \(1 / 30\) & 19,21,23 & & & & \\
\hline MY9G36B & 90 mm sq . Hinge attached Reduction raio: \(1 / 36\) & 19,21,23 & & & & \\
\hline му9сзв & 90 mm sq . Hinge attached Reduction ratio: \(1 / 3\) & 19,21,23 & & & & \\
\hline MY9G50B & 90 mm sq . Hinge attached Reduction raio: \(1 / 50\) & 19,21,23 & & & & \\
\hline MY9G5B & \(90 \mathrm{~mm} \mathrm{sq}\). . Hinge attached Reduction ratio: \(1 / 5\) & 19,21,23 & & & & \\
\hline MY9G60B & 90 mm sa . Hinge attached Reduction ratio: \(1 / 60\) & 19,21,23 & & & & \\
\hline MY9G6B & 90 mm sq . Hinge attached Reduction ratio: \(1 / 6\) & 19,21,23 & & & & \\
\hline MY9G7.5B & 90 mm sq. Hinge atached Reduction ratio: 17.5 & 19,21,23 & & & & \\
\hline
\end{tabular}

\section*{Sales office}
[Panasonic Sales Office of Motors]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Country} & \multirow[t]{2}{*}{Company Name [Category]} & \multirow[b]{2}{*}{City} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Address}} & TEL \\
\hline & & & & & FAX \\
\hline \multirow{2}{*}{U.S.A} & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales Company of America [Sales office]} & \multirow{2}{*}{New Jersey} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Two Riverfront Plaza, 7th Floor Newark, NJ 07102-5490 U.S.A}} & +1-800-228-2350 \\
\hline & & & & & - \\
\hline \multirow[t]{2}{*}{Brazil} & \multirow[t]{2}{*}{Panasonic do Brazil [Sales office]} & \multirow[t]{2}{*}{Sao Paulo} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Avenida do Cafe, 277 Torre A-8 Andar Jabaquara \\
ZIP Code: 04311-900 Sao Paulo SP Brazil
\end{tabular}}} & +55-11-3889-4022 \\
\hline & & & & & +55-11-3889-4103 \\
\hline \multirow{15}{*}{Germany} & \multirow[b]{4}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales \\
Europe GmbH \\
[Sales office] \\
[European Headquarter]
\end{tabular}} & \multirow{4}{*}{Munich} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Hans-Pinsel-Strasse 2 D D 85540 Haar Germany}} & +49-89-46-159-0 \\
\hline & & & & & +49-89-46-159-212 \\
\hline & & & e-mail & http://eu.industrial.panasonic.com/ab & ut-us/contact-us \\
\hline & & & Web site & http://eu.industrial.panasonic.com/pr compressors-pumps & ducts/motors- \\
\hline & \multirow{3}{*}{ghv Vertriebs-GmbH [Distributors]} & \multirow{3}{*}{Munich} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Am Schammacher Feld 47 D-85567 Grafing b. Munich}} & +49(0)-80-92/81-89-0 \\
\hline & & & & & +49(0)-80-92/81-89-99 \\
\hline & & & e-mail & http://www.ghv.de/kontakt.html & \\
\hline & \multirow{4}{*}{\begin{tabular}{l}
Panasonic Electric Works Europe AG \\
[Sales office] \\
[European Headquarter]
\end{tabular}} & \multirow{4}{*}{Holzkirchen} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Deutschland}} & +49 (0) 8024 648-0 \\
\hline & & & & & +49 (0) 8024 648-111 \\
\hline & & & e-mail & https://www.panasonic-electric-works & com/eu/93.htm \\
\hline & & & Web site & https://www.panasonic-electric-works & com/eulindex.htm \\
\hline & \multirow{4}{*}{Panasonic Electric Works Europe AG
[Subsidiary]} & \multirow{4}{*}{Holzkirchen} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Deutschland}} & +49 (0) 8024 648-0 \\
\hline & & & & & +49 (0) \(8024648-111\) \\
\hline & & & e-mail & https://www.panasonic-electric-works & com/eu/93.htm \\
\hline & & & Web site & https://www.panasonic-electric-works & com/eulindex.htm \\
\hline \multirow{4}{*}{Italy} & \multirow{4}{*}{Lenze Italia S.r.I. [Distriutuors]} & \multirow{4}{*}{Milano} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Viale Monza 33820128 Milano}} & +39-02-270-98-1 \\
\hline & & & & & +39-02-270-98-290 \\
\hline & & & e-mail & mail@Lenzeltalia.it & \\
\hline & & & Web site & http://www.lenze.com/itit/azienda/len & ze-in-italia/ \\
\hline \multirow{4}{*}{United Kingdom} & \multirow{4}{*}{\begin{tabular}{l}
Lenze Limited \\
[Distributors]
\end{tabular}} & \multirow{4}{*}{Bedford} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Priory Business Park, Bedford, MK44 3WH.}} & +44-1234-7532-00 \\
\hline & & & & & +44-1234-7532-20 \\
\hline & & & e-mail & uk.sales@lenze.com & \\
\hline & & & Web site & http://www.lenze.com/en-gb/about-lenzele kingdom/ & /lenze-in-united- \\
\hline \multirow{4}{*}{Romania} & \multirow{4}{*}{C.I.T. Automatizari SRL [Distributors]} & \multirow{4}{*}{Bucuresti} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{sos. Bucuresti, nr.63, Ciorogirla, Ilfov, RO077055, ROMANIA}} & +40-21-255-0543 \\
\hline & & & & & +40-21-255-0544 \\
\hline & & & e-mail & office@citautomatizari.ro & \\
\hline & & & Web site & http://www.citautomatizari.ro & \\
\hline \multirow{3}{*}{Russia} & \multirow{3}{*}{Electroprivod Ltd.
[Distributors]} & \multirow{3}{*}{St.Petersburg} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Office 417, litera 43, Polustrovskiy avenue, Saint-Petersburg, Russia}} & +7-812-703-09-81 \\
\hline & & & & & +7-812-493-27-26 \\
\hline & & & Web site & http://www.electroprivod.ru & \\
\hline \multirow{8}{*}{Turkey} & \multirow{4}{*}{BOSTEK TEKNOLOJI GELISTIRME VE ROBOT SIST.SAN.TIC.A.S [Distributors]} & \multirow{4}{*}{Izmir} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10042 SOK.NO:10 A.O.S.B CIGLI-IZMIR, TURKEY}} & +90 2324338515 \\
\hline & & & & & +90 2324338881 \\
\hline & & & e-mail & sales@bostek.com.tr & \\
\hline & & & Web site & http://www.bostek.com.tr/ & \\
\hline & \multirow{4}{*}{Savior Kontrol Otomasyon [Distributors]} & \multirow{4}{*}{Istanbul} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Des Sanayi Sitesi 104 Sokak A07 Blok No:02 Yukarı Dudullu Ümraniye ìstanbul Turkey}} & +90-216-466-3683 \\
\hline & & & & & +90-216-466-3685 \\
\hline & & & e-mail & info@savior.com.tr & \\
\hline & & & Web site & http://www.savior.com.tr/ & \\
\hline \multirow{6}{*}{China} & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales (Hong Kong) Co.,Ltd. (PIDSHK) [Sales office]} & \multirow[b]{2}{*}{Hong kong} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Top Floor, South Wing, ChinaChem Gloden Plaza, 77 Mody Road, S.T.S. East, Kowloon, HongKong}} & +852-2529-7322 \\
\hline & & & & & +852-2598-9743 \\
\hline & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales (China) Co.,Ltd. (PIDSCN) [Sales office]} & \multirow[b]{2}{*}{Shanghai} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Floor 6, China Insurance Building, 166 East Road LuJiaZui PuDong New District, Shanghai, China}} & +86-21-3855-2442 \\
\hline & & & & & +86-21-3855-2375 \\
\hline & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales (China) Co.,Ltd. (PIDSCN) [Sales office]} & \multirow[b]{2}{*}{Shenzhen} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8/F, Tower Three, Kerry Plaza, 1-1 Zhongxinsi Road, Futian District, Shenzhen, China}} & +86-755-8255-8791 \\
\hline & & & & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Country}} & \multirow[t]{2}{*}{Company Name [Category]} & \multirow[t]{2}{*}{City} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Address}} & TEL \\
\hline & & & & & & FAX \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Korea}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Korea Co., Ltd. (PIDSKR) \\
[Sales office]
\end{tabular}} & \multirow[b]{2}{*}{Seoul} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6F DONG-IL Tower 38, Teheran-ro 114-gil, Gangnam-gu, Seoul, 135-851, Korea}} & +82-2-795-9600 \\
\hline & & & & & & +82-2-2052-1053 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Taiwan}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Taiwan Co.,Ltd. \\
[Sales office]
\end{tabular}} & \multirow[b]{2}{*}{Taipei} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12F, No.9, SongGao Rd., Taipei 110, Taiwan, R.O.C.}} & +886-2-2757-1900 \\
\hline & & & & & & +886-2-2757-1977 \\
\hline \multicolumn{2}{|r|}{\multirow{12}{*}{India}} & \multirow{3}{*}{\begin{tabular}{l}
Industrial Division, \\
Panasonic India Pvt Ltd. \\
[Sales office]
\end{tabular}} & \multirow{3}{*}{Gurgaon, Haryana} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12th Floor, Ambience Commercial, Behind Ambience Mall, Gurgaon - 122002, Haryana, India}} & +91-124-6670400 \\
\hline & & & & & & +91-124-6670338 \\
\hline & & & & Web site & http://industrial.panasonic.com/sa/p compressors/fa-motors & ducts/motors- \\
\hline & & \multirow{3}{*}{Lubi Electronics [Distributors]} & \multirow{3}{*}{Gandhinaga, Gujarat} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sardar Patel Ring Road, Near Bright School, Nana Chiloda, \\
Dist.: Gandhinagar - 382330, Gujarat, India
\end{tabular}}} & +91-79-39845300 \\
\hline & & & & & & +91-79-39845599 \\
\hline & & & & Web site & http://www.lubielectronics.com & \\
\hline & & \multirow{3}{*}{\begin{tabular}{l}
Luna Bearings \\
[Distributors]
\end{tabular}} & \multirow{3}{*}{Mumbai, Maharashtra} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{59, Bibijan Street, 2nd Floor, Moiz Manzil, Mumbai - 400003, Maharashtra, India}} & +91-22-23455052 \\
\hline & & & & & & +91-22-23427773 \\
\hline & & & & Web site & http://www.lunabearings.com & \\
\hline & & \multirow{3}{*}{Vashi Electricals Pvt. Ltd. [Distributors]} & \multirow{3}{*}{Mumbai, Maharashtr} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
A/6, Plot No.74, Shree Ganesh Complex, Behind Gupta Compound, Dapole Road, Mankoli Naka, \\
Bhiwandi - 421305, Maharashtra, India
\end{tabular}}} & +91-2522-661600 \\
\hline & & & & & & +91-2522-661620 \\
\hline & & & & Web site & http://www.vashielectricals.com & \\
\hline \multirow{29}{*}{} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Asia Pte.Ltd. \\
[Sales office]
\end{tabular}} & \multirow[b]{2}{*}{Singapore} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{No. 3 Bedok South Road Singapore 469269}} & +65-6390-3718 \\
\hline & & & & & & +65-9435-6844 \\
\hline & \multirow{3}{*}{Singapore} & \multirow{3}{*}{Intermech Machinery Pte. Ltd. [Distributors]} & \multirow{3}{*}{Singapore} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2 Woodlands Sector 1 \#03-25, Woodlands Spectrum 1 Singapore 738068}} & +65-6751-5088 \\
\hline & & & & & & +65-6759-2122 \\
\hline & & & & Web site & http://www.intermech.com.sg & \\
\hline & \multirow{6}{*}{Malaysia} & \multirow{3}{*}{Panamech Machinery Sdn Bhd [Distributors]} & \multirow{3}{*}{Kuala Lumpur} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{No.14, Lorong Sanggul 1C, Bandar Puteri, 41200 Klang, Selangor Darul Ehsan}} & +60-3-5161-7876 \\
\hline & & & & & & +60-3-5161-7136 \\
\hline & & & & Web site & http://panamech.com.my/ & \\
\hline & & \multirow{3}{*}{Panamech (PG) Sdn Bhd
[Distributors]} & \multirow{3}{*}{Penang} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sri Relau Komplex, Unit 1-3-11, Persiaran Bukit Jambul 1, 11900 Penang}} & +60-4-643-8266 \\
\hline & & & & & & +60-4-645-1639 \\
\hline & & & & Web site & http://panamech.com.my/ & \\
\hline & \multirow{9}{*}{Thailand} & \multirow{3}{*}{Premier Automation Center Co.,Ltd. [Distributors]} & \multirow{3}{*}{Bangkok} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{73 Soi Ladkrabang 30 Ladkrabang Ladkrabang Bangkok 10520}} & +66-2181-2299 \\
\hline & & & & & & +66-2181-2288 \\
\hline & & & & Web site & http://www.premier-ac.co.th & \\
\hline & & \multirow{3}{*}{Plenty Island (Thai) Co.,Ltd. [Distributors]} & \multirow{3}{*}{Bangkok} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{3 Soi Charoenrat 10, Charoenrat Road., Bangkhlo, Bangkhorlaem, Bangkok 10120}} & +66-2291-9933 \\
\hline & & & & & & +66-2291-2065 \\
\hline & & & & Web site & http://www.plenty.co.th & \\
\hline & & \multirow{3}{*}{Seng Charoen Muang Co.,Ltd. [Distributors]} & \multirow{3}{*}{Bangkok} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12/349 Moo 15, Bangkaew, Bangplee, Samutprakam 10540}} & +66-2397-9577 \\
\hline & & & & & & +66-2361-8207 \\
\hline & & & & Web site & http://www.sengscm.com & \\
\hline & \multirow{6}{*}{Indonesia} & \multirow{3}{*}{PT. Handal Yesindo Sejahtera [Distributors]} & \multirow{3}{*}{Surabaya} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{JI. Raya Kutisari 8A, Surabaya, Indonesia}} & +62-31-843-8844 \\
\hline & & & & & & +62-31-841-4333 \\
\hline & & & & Web site & http://www.handalyesindo.com & \\
\hline & & \multirow{3}{*}{PT.Riasarana Electrindo [Distributors]} & \multirow{3}{*}{Jakarta} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{JI. Prof. Dr. Latumenten Grogol Permai blok D No. 8-15 Jakarta 11460, Indonesia}} & +62-21-564-9178 \\
\hline & & & & & & +62-21-566-7405 \\
\hline & & & & Web site & http://www.risacorps.com & \\
\hline & \multirow{3}{*}{Philippines} & \multirow{3}{*}{Movaflex Designs Unlimited, Inc. [Distributors]} & \multirow{3}{*}{Manila} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{136 Calbayog Street, Mandaluyong City, Metro Manila, Philippines.}} & +63-2-881-3636 \\
\hline & & & & & & +63-2-998-3881 \\
\hline & & & & Web site & http://www.movaflex.com/ & \\
\hline
\end{tabular}```

