

February 2009

SG6859D Low-Cost, Green-Mode PWM Controller for Flyback Converters

Features

- Green-Mode PWM
- Supports the "Blue Angel" Standard
- Low Startup Current: 9µA
- Low Operating Current: 3mA
- 300mA Driving Capability
- Leading-Edge Blanking
- Constant Output Power Limit
- Universal Input
- Built-in Synchronized Slope Compensation
- Current-Mode Operation
- Cycle-by-Cycle Current Limiting
- Under-Voltage Lockout (UVLO)
- Programmable PWM Frequency with Frequency Hopping
- V_{DD} Over-Voltage Protection (Auto Restart)
- Gate Output Voltage Clamped at 17V
- Low Cost
- Few External Components Required
- Small SSOT-6 Package

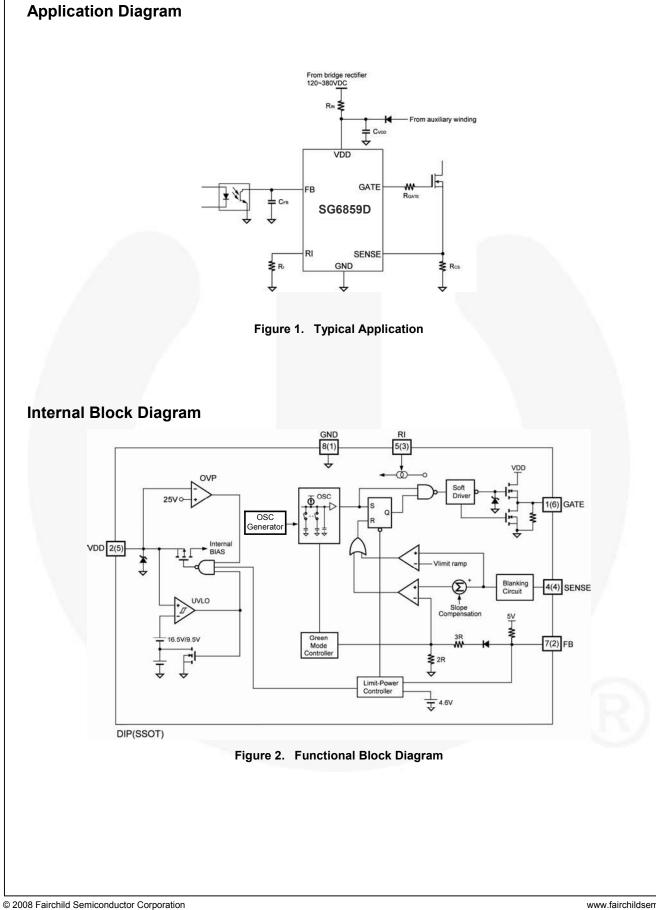
Applications

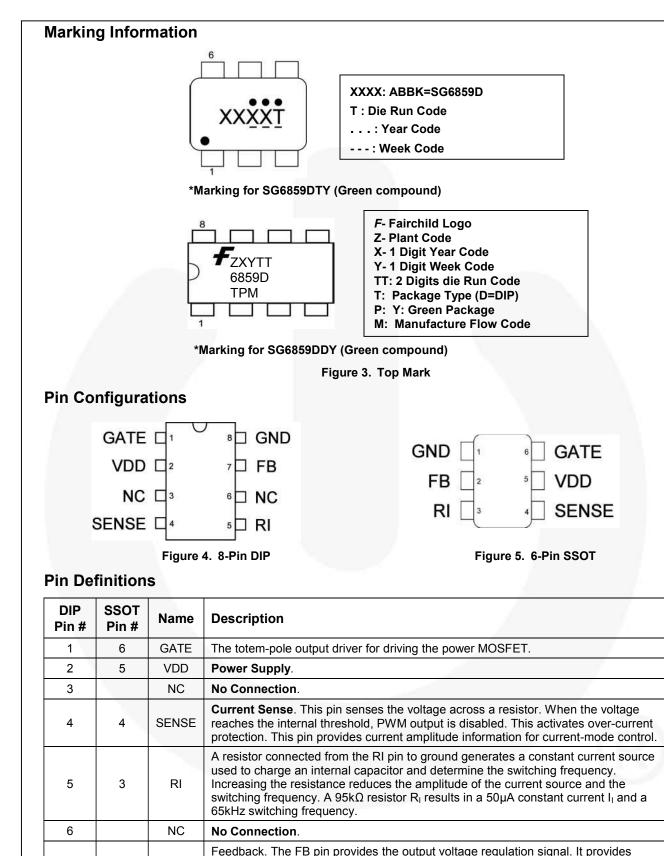
General-purpose switching mode power supplies and flyback power converters, such as:

- Battery chargers for cellular phones, cordless phones, PDAs, digital cameras, and power tools
- Power adapters for ink jet printers, video game consoles, and portable audio players
- Open-frame SMPS for TV/DVD standby and auxiliary supplies, home appliances, and consumer electronics
- Replacements for linear transformers and RCC SMPS
- PC 5V standby power

Ordering Information

Part Number	Operating Temperature Range	Package	Eco Status	Packing Method	
SG6859DTY	-40 to +105°C	SSOT-6	Green	Tape & reel	
SG6859DDY	-40 10 + 105 °C	DIP-8	Green	Tube	


🥙 For Fairchild's definition of "green" Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html.</u>


Description

This highly integrated PWM controller provides several enhancements designed to meet the low standby-power needs of low-power SMPS. To minimize standby power consumption, the proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load conditions. This green-mode function enables the power supply to meet even the strictest power conservation requirements.

The BiCMOS fabrication process enables reducing the startup current to 9μ A and the operating current to 3mA. To further improve power conservation, a large startup resistance can be used. Built-in synchronized slope compensation ensures the stability of peak current mode control. Proprietary internal compensation provides a constant output power limit over a universal AC input range ($90V_{AC}$ to $264V_{AC}$). Pulse-by-pulse current limiting ensures safe operation during short-circuits.

To protect the external power MOSFET from damage by supply over voltage, the SG6859D's output driver is clamped at 17V. SG6859D controllers can be used to improve the performance and reduce the production cost of power supplies. The best choice for replacing linear and RCC-mode power adapters. Available in 8pin DIP and 6-pin SSOT-6 packages.

2

1

FB

GND

the duty cycle.

Ground.

7

8

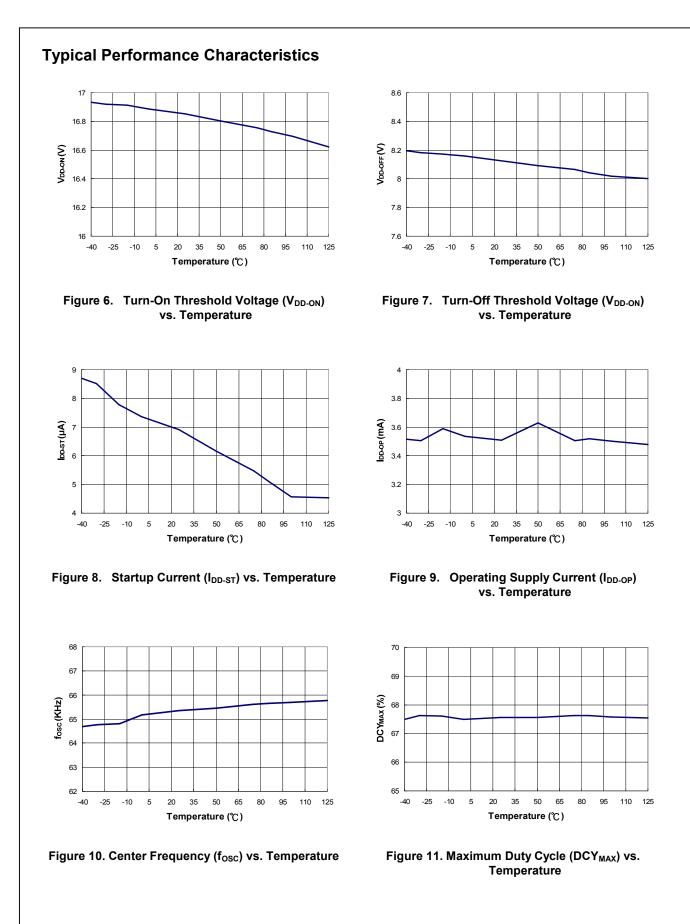
feedback to the internal PWM comparator, so that the PWM comparator can control

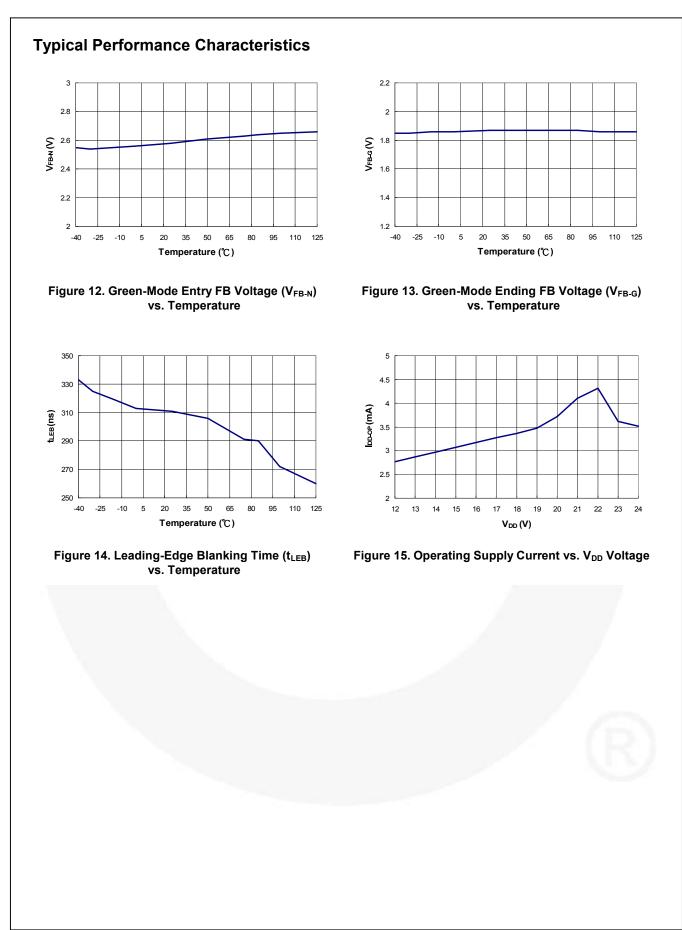
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
V _{VDD}	DC Supply Voltage ^(1, 2)				30	V
V _{FB}	Input Voltage to FB Pin			-0.3	7.0	V
V _{SENSE}	Input Voltage to Sense Pin			-0.3	7.0	V
TJ	Operating Junction Temperature				150	°C
Θ _{JA} Thermal Resistance (Ju	Thermal Desistance (lunction to Air)		SSOT		208.4	°C/W
	TCIION-IO-AII)	DIP		82.5	°C/W	
T _{STG}	Storage Temperature Range		-55	+150	°C	
TL	Lead Temperature (Wave Soldering or IR, 10 Seconds)			+260	°C	
ESD E	Electrostatia Discharge	Human Body Model, JEDEC:JESD22-A114			3.5	kV
	Electrostatic Discharge	Charged Device Model, JEDEC:JESD22-C101			1.25	kV

Notes:


1. All voltage values, except differential voltages, are given with respect to GND pin.


2. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Electrical Characteristics

Unless otherwise noted, V_{DD} =15V and T_A=25°C.

Symbol		Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD} Secti	on						•
V _{DD-OP}	Continuously	Operation Voltage				22	V
V _{DD-ON}	Turn-On Thre	shold Voltage		15.5	16.5	17.5	V
$V_{\text{DD-OFF}}$	Turn-Off Thre	shold Voltage		8.5	9.5	10.5	V
I _{DD-ST}	Startup Curre	nt	V _{DD} =V _{DD-ON} – 0.1V		9	15	μA
I _{DD-OP}	Operating Su	pply Current	V _{DD} =15V, C _L =1nF		3.0	3.5	mA
V _{DD-OVP}	V _{DD} Over-Vol	tage Protection Level	Auto Restart	24	25	26	V
t _{D-VDDOVP}	V _{DD} Over-Vol	tage Protection Debounce	Auto Restart		125		μs
Feedbac	k Input Secti	on				•	
Z _{FB}	Input Impeda				5		kΩ
V _{FB-OPEN}	FB Output Hig		FB Pin Open	5			V
V _{FB-OL}	FB Open-loop	o Trigger Level		4.3	4.6	4.9	V
t _{D-OLP}		Pin Open-loop Protection	R _I =95kΩ	53	58	63	ms
V _{FB-N}	-	Entry FB Voltage		2.60	2.85	3.10	V
V _{FB-G}	Green-Mode	Ending FB Voltage			2.2		V
V _{FB-ZDC}	Zero Duty-Cy	cle Input Voltage			1.8		V
S _G	Green-Mode	Modulation Slope	R _I =95kΩ	40	60	80	Hz/m\
Current-	Sense Sectio	n			-		
ZSENSE	Input Impeda	nce		10			kΩ
t _{PD}	Delay to Outp			45	65	85	ns
VSTHFL	Flat Threshold Voltage for Current Limit			0.95	1.01	1.06	V
VSTHVA	Valley Threshold Voltage for Current Limit		it	0.75	0.80	0.85	V
t _{LEB}	Leading-Edge Blanking Time			250	300	350	ns
DCY _{SAW}	Duty Cycle of SAW Limit				30		%
	r Section						
		Center Frequency		60	65	70	E
fosc Frequency	Frequency	Hopping Range	R _I =95kΩ		±4		- kHz
t _{HOP}	Hopping Perio		R _l =95kΩ		4		ms
fosc-g	Green-Mode		R _I =95kΩ		22		kHz
f _{DV}		ariation vs. V _{DD} Deviation	V _{DD} =13.5 to 22V			5	%
f _{DT}		ariation vs. Temperature	T _A =-20 to 85°C			5	%
Output S	ection		I				
	Maximum Du	tv Cvcle		65	70	75	%
V _{GATE-L}	Output Voltage Low		V _{DD} =15V, I _O =20mA	00		1.4	V
VGATE-H	Output Voltage High		V _{DD} =13.5V, I _O =20mA	8			v
t _r	Rising Time		V _{DD} =15V, C _L =1nF	80	150	180	ns
t _f	Falling Time		V _{DD} =15V, C _L =1nF	35	55	75	ns
VGATE- CLAMP	Output Clamp	o Voltage	V _{DD} =22V	16	17	18	V

Operation Description

SG6859D devices integrate many useful designs into one controller for low-power, switch-mode power supplies. The following descriptions highlight some of the features of the SG6859D series.

Startup Current

The startup current is only 9µA. Low startup current allows a startup resistor with high resistance and low-wattage to supply the startup power for the controller. A 1.5M Ω , 0.25W, startup resistor and a 10µF/25V V_{DD} hold-up capacitor are sufficient for an AC-to-DC power adapter with a wide input range (100V_{AC} to 240V_{AC}).

Operating Current

The operating current has been reduced to 3mA. The low operating current results in higher efficiency and reduces the V_{DD} hold-up capacitance requirement.

Green-Mode Operation

The proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load conditions. On-time is limited to provide stronger protection against brownouts and other abnormal conditions. The feedback current, which is sampled from the voltage feedback loop, is taken as the reference. Once the feedback current exceeds the threshold current, the switching frequency starts to decrease. This green-mode function dramatically reduces power consumption under light-load and zeroload conditions. Power supplies using the SG6859D can meet even the strictest regulations regarding standby power consumption.

Oscillator Operation

A resistor connected from the RI pin to ground generates a constant current source used to charge an internal capacitor. The charge time determines the internal clock speed and the switching frequency. Increasing the resistance reduces the amplitude of the input current and the switching frequency. A $95k\Omega$ R_I resistor results in a 50μ A constant current I_I and a 65kHz switching frequency. The relationship between R_I and the switching frequency is:

$$f_{PWM} = \frac{6175}{R_{I}(k\Omega)}(kHz)$$
(1)

Leading-Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs at the sense-resistor. To avoid premature termination of the switching pulse, a 300ns leadingedge blanking time is built in. Conventional RC filtering can be omitted. During this blanking period, the currentlimit comparator is disabled and cannot switch off the gate driver.

Constant Output Power Limit

When the SENSE voltage across the sense resistor, R_s, reaches the threshold voltage (around 1.01V), the output GATE drive is turned off following a short propagation delay, t_{PD}. This propagation delay introduces an additional current proportional to tPD-VIN/LP. The propagation delay is nearly constant, regardless of the input line voltage V_{IN}. Higher input line voltages result in larger additional currents. At high input line voltages, the output power limit is higher than at low input line voltages. To compensate for this output power limit variation across a wide AC input range, the threshold voltage is adjusted by adding a positive ramp. This ramp signal rises from 0.8V to 1.01V, then flattens out at 1.01V. A smaller threshold voltage forces the output GATE drive to terminate earlier, which reduces the total PWM turn-on time and makes the output power equal to that of low line input. This proprietary internal compensation ensures a constant output power limit for a wide AC input voltage range (90V_{AC} to 264V_{AC}).

Under-Voltage Lockout (UVLO)

The turn-on and -off thresholds are fixed internally at 16.5V and 9.5V. During startup, the hold-up capacitor must be charged to 16.5V through the startup resistor to enable the SG6859D. The hold-up capacitor continues to supply V_{DD} until power is delivered from the auxiliary winding of the main transformer. V_{DD} must not drop below 9.5V during this startup process. This UVLO hysteresis window ensures that hold-up capacitor is adequate to supply V_{DD} during startup.

Gate Output

The BiCMOS output stage is a fast totem pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 17V Zener diode to protect power MOSFET transistors against undesired over-voltage gate signals.

Built-In Slope Compensation

The sensed voltage across the current-sense resistor is used for current-mode control and pulse-by-pulse current limiting. Built-in slope compensation improves stability and prevents sub-harmonic oscillations due to peak-current mode control. The SG6859D has a synchronized, positively-sloped ramp built-in at each switching cycle.

Noise Immunity

Noise from the current sense or the control signal can cause significant pulse-width jitter, particularly in continuous-conduction mode (CCM). While slope compensation helps alleviate these problems, further precautions should still be taken. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the SG6859D, and increasing power MOS gate resistance improve performance.

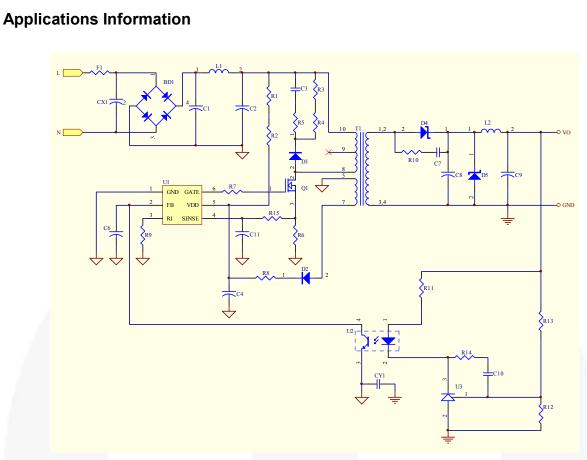


Figure 16. Reference Circuit

BOM

Reference	Component	Reference	Component
BD1	BD 1A/500V	L2	10µH 6mm
CX1 (Optional)	XC 0.1µF	Q1	MOSFET 1A/600V
CY1 (Optional)	YC 102P/400V (Y1)	R1,R2	R 750KΩ 1206
C1	CC 103P/500V	R3,R4	R 47KΩ 1206
C2	EC 10µF/400V 105°C	R5	R 47Ω 1206
C3	CC 102P/500V	R6	R 4.7Ω 1206
C4	EC 10µF/50V	R7	R 100Ω 0805
C6	CC 472P 0805	R8	R 10Ω 1206
C7 (Optional)	CC 102P/100V 1206	R9	R 100KΩ 0805
C8	EC 470µF/10V 105°C	R10 (Optional)	R 10Ω 1206
C9	EC 220µF/10V 105°C	R11	R 100Ω 1/8W
C10	CC 222P 0805	R12	R 33KΩ 0805
C11	N.C.	R13	R 33KΩ 1/8W
D1	Diode FRI07	R14	R 4.7KΩ 0805
D2	Diode FR102	R15	R 0Ω 0805
D4	Diode SB360	T1	EE-16
D5 (Optional)	ZD 6.8V 0.5W	U1	IC SG6859D
F1	R 1Ω/0.5W	U2	PC817
L1	20mH 6•8mm	U3	TL431

FAIRCHILD.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowerTM AX-CAP[®]* BitSiCTM Build it NowTM CorePLUSTM CorePOWERTM *CROSSVOLT*TM CTLTM CUrrent Transfer LogicTM DEUXPEED[®] Dual CoolTM EcoSPARK[®] EfficientMaxTM ESBCTM ESBCTM Fairchild[®] Fairchild[®]

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FETBench[™] FPS[™] FRFFT® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ **OPTOLOGIC® OPTOPLANAR**[®]

F-PFS™

Oo® PowerTrench® PowerXS™ Programmable Active Droop™ QFET®

QS™ Quiet Series™ RapidConfigure™

⊃™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ GENERAL®*

TinyBoost[®] TinyBuck[®] TinyCalc[™] TinyLogic[®] TINYOPTO[™] TinyPower[™] TinyPWM[™] TinyWire[™] TranSiC[™] TranSiC[™] TRUECURRENT[®]* µSerDes[™]

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 168