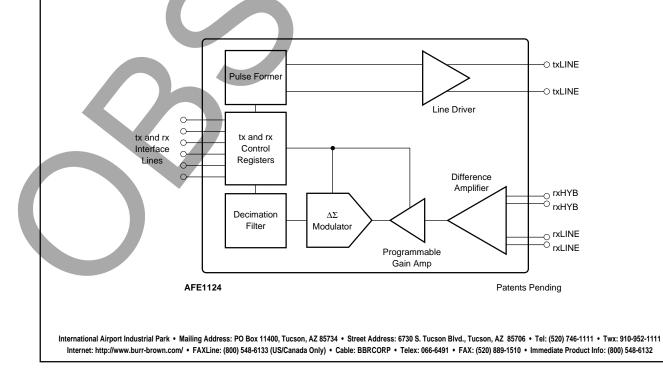


AFE1124

HDSL/MDSL ANALOG FRONT END

FEATURES


- SERIAL DIGITAL INTERFACE
- 28-PIN SSOP
- E1, T1 AND MDSL OPERATION

DESCRIPTION

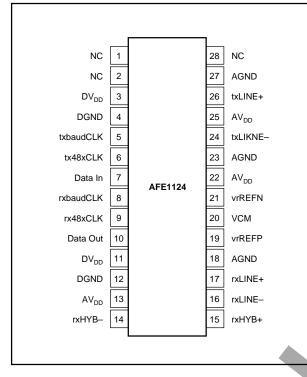
Burr-Brown's Analog Front End chip greatly reduces the size and cost of an xDSL (Digital Subscriber Line) system by providing all of the active analog circuitry needed to connect a digital signal processor to an external compromise hybrid and line transformer. The AFE1124 is optimized for HDSL (High bit rate DSL) and for lower speed MDSL (Medium speed DSL) and RADSL (Rate Adaptive DSL) applications. Because the transmit and receive filter responses automatically change with clock frequency, the AFE1124 is particularly suitable for RADSL and multiple rate DSL systems. The device operates over a wide range of data rates from 64kbps to 1168kbps.

- 64kbps TO 1168kbps OPERATION
- SCALEABLE DATA RATE
- 250mW POWER DISSIPATION
- COMPLETE HDSL ANALOG INTERFACE
- +5V POWER (5V or 3.3V Digital)

Functionally, this unit consists of a transmit and a receive section. The transmit section generates analog signals from 2-bit digital symbol data and filters the analog signals to create 2B1Q symbols. The on board differential line driver provides a 13.5dBm signal to the telephone line. The receive section filters and digitizes the symbol data received on the telephone line. This IC operates on a single 5V supply. The digital circuitry in the unit can be connected to a supply from 3.3V to 5V. It is housed in a 28-pin SSOP package.

SPECIFICATIONS

Typical at 25°C, AV_{DD} = +5V, DV_{DD} = +3.3V, f_{tx} = 584kHz (E1 rate), unless otherwise noted.


PARAMETER COMMENTS MIN TYP MAX UNITS RECEIVE CHANNEL Number of Inputs Input Voltage Range Common-Mode Voltage Programmable Gain Senting Time for Gain Change Gain 4 Offset Error Output Gain Matching Resolution Gain 4 Offset Error Output Bar Cacing Change The Gain Change Senting Time for Gain Change Cating				AFE1124E		
Number of inputs input Volage Range Common-Mode Voltage Input Gamatching Differential Balanced Differential ⁽¹⁾ 2	PARAMETER	COMMENTS	MIN	ТҮР	МАХ	UNITS
Input Voltage Range Common-Mode Voltage Resolution 3.0 (N _V , N _V ,	RECEIVE CHANNEL					
Common-Made Vallage Input Gapacitance Input Gapacitance Gain + Other Error Output Bit Rate, rSYNC ^(R) Output Bit Rate, rSYNC ^(R) Dutput Bit Rate, rSYNC ^(R) Dutput Bit Rate, rSYNC ^(R) Dutput Bit Rate Rate I ₁ I Transmit -3dB Point E Transmit Power ^(K, R) Pile Output E Transmit Power ^(K, R) DC to 1MHz 32 32 32 32 32 32 32 32 32 32 32 32 32 3	Number of Inputs	Differential	2			
Input Impedance All Inputs Input Capacitance Prove Transmit Gala See Typical Performance Ources PF 10 Input Capacitance Resolution Setting Time for Gain Change Gain + Offset Error Output Symbol Rate, rxSYNC ⁽³⁾ DdB, 3dB, 6dB, 9dB and 12dB 14	Input Voltage Range	Balanced Differential ⁽¹⁾		±3.0		V
Input Imput Dapadance All inputs Input Capacitance Resolution Sae Typical Performance Curves. PF Input Capacitance Resolution Use Status 10 9 9 9 9 9 9 9 9 14 9 9 9 9 9 9 14 9 9 9 14 9 9 14 9 9 14 9 9 14 8 8 8 8 9 14 14 0 9 14 14 0 9 14 14 0 9 14 16	Common-Mode Voltage			AV _{DD} /2		V
Input Gapacitance	Input Impedance All Inputs		See Tv		ce Curves	
Input Gain Matching Resolution Line Input vs Hybrid Input 12 32 36 Programmable Gain Setting Time for Gain Change Gain + Offset Error 0dB, 3dB, 6dB, 9dB and 12dB 0 4 0 6 +12 3dB Output Symbol Rate, rxSYNC ⁽³⁾ Tested at Each Gain Range Two's Complement 32 5B4 kHz kHz Output Symbol Rate, rxSYNC ⁽³⁾ Tested at Each Gain Range Two's Complement 32 5B4 kHz Transmit Clock Rate, f _k , 11 Transmit -3dB Point Symbol Rate ETSI RTR/TM - Compliant 32 196 kHz kHz Transmit -3dB Point See Test Method Section, txBoost = 0 13 292 14 dBm Pulse Output Common-Mode Voltage, V _{CM} DC to 1MHz AV _{Op} /2 V V Common-Mode Voltage, V _{CM} DC to 1MHz 771 -68.5 dB rxGAIN = 0dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled -774 -71 -68.5 dB Uncancelled Echo ⁽⁵⁾ H _M I < 10µA			,			ρF
Resolution 14 14 14 14 14 15 Bits Programmable Gain 0dB, 3dB, 6dB, 9dB and 12dB 0dB, 3dB, 6dB, 9dB and 12dB 0 6 +12 3dB Gain + Offset Error Output Diat Coding Two's Complement 32 584 kHz Output Signed Res, res/NC(3) Two's Complement 32 584 kHz Transmit Signed Res, res/NC(3) Transmit AdB Point ETSI RTRTM - Compliant 32 584 kHz T1 Transmit AdB Point ETSI RTRTM - Compliant See Test Method Section, txBoost = 0 13 14 dBm Transmit AdB Point ETSI RTRTM - Compliant See Test Method Section, txBoost = 0 13 14 dBm Transmit Powert ^{4, 5}) ETSI RTRTM - Compliant See Test Method Section, txBoost = 0 13 232 V WHz Common-Mode Voltage, V _{CM} DC to 1MHz 14 dBm DC Mzgol 232 V WHz Q Transmit See Test Method Section, txBoost = 0 V Q Common-Mode Voltage, V _{CM} <t< td=""><td></td><td>Line Input vs Hybrid Input</td><td></td><td>+2</td><td></td><td></td></t<>		Line Input vs Hybrid Input		+2		
Programable Gain Setting Time for Gain Change Gain + Offset Error OdB, 3dB, 6dB, 9dB and 12dB 0 +12 0dB Symbal Period Symbal Period Output Symbol Rate, rxSYNC ⁽³⁾ Tested at Each Gain Range Two's Complement 32 5 5 5 5 5 5 5 5 64 1168 kHz			14			1.
Setting Time for Gain Change Gain + Offset Error Output Data Coding Duput Symbol Rate, nSYNC ⁽³⁾ Tested at Each Gain Range Two's Complement 6 Symbol Period Setting 32 Symbol Period Set 64 Symbol Period %FSR ⁽²⁾ Duput Dis Rate, nSYNC ⁽³⁾ Tested at Each Gain Range Two's Complement 32 584 kHz 11 ransmit Ad Point T1 ransmit Ad Point E Transmit Ad Point E Transmit Power ^(4, 5) Symbol Rate E TSI RTR/TM - Compliant See Test Method Section, txBoost = 0 32 584 kHz 12 ransmit - add Point E Transmit		0dB 3dB 6dB 9dB and 12dB			+12	
Gain + Offset Error Tested at Each Gain Range Two's Complement 5 %FSR ⁽²⁾ Output Diat Coding Output Diat Rate, rxSYNC ⁽³⁾ Tested at Each Gain Range Two's Complement 32 584 kHz kbits/sec TRANSMIT CHANNEL Transmit - JdB Point 11 Rate Power ^{4, 6, 0} Symbol Rate ETSI RTR/TM - Compliant See Test Method Section, txBoost = 0 32 584 kHz kHz T1 Transmit - JdB Point E1 Transmit - JdB Point E1 Transmit - JdB Point E1 Transmit - JdB Point E1 Transmit - JdB Performance Curves 13 14 JBm Common-Mode Voltage, V _{CM} DC to 1MHz 292 KHz KHz Common-Mode Voltage, V _{CM} DC to 1MHz AVpo/2 V Output Beistance ⁽⁰⁾ DC to 1MHz AVpo/2 V Transmit - JdB, Loopback Disabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 20B, A F V Vith Vut Vith			ů	6		
Output Data Coding Output Symbol Rate, rxSYNC(3) Two's Complement 32 584 kHz kbits/sec Transmit Clock Rate, f _k Ti Transmit-Openation 32 584 kHz kbits/sec Transmit Clock Rate, f _k Symbol Rate 32 584 kHz kbits/sec Transmit Clock Rate, f _k ETSI RTR/TM - Compliant 32 584 kHz kbits/sec Ti Transmit-Ober(^{4, 5)} ETSI RTR/TM - Compliant 13 14 dBm See Test Method Section, txBoost = 0 13 292 kHz Common-Mode Voltage, V _{CM} DC to 1MHz 13 14 dBm Common-Mode Voltage, V _{CM} DC to 1MHz AV _{Lp} /Z V V Output Resistance ⁽⁶⁾ rxGAIN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 34B, Loopback Disabled rxGAIN = 34B, Loopback Disabled rxGAIN = 24B, Loopback Disabled rxGA	5	Tostod at Each Gain Panga				
Output Brain, RSYNC(3) 32 584 kHz Output Bit Rate, rXSYNC(3) 32 584 kHz Channell Symbol Rate 32 584 kHz Transmit Clock Rate, f ₄ Transmit Compliant 32 584 kHz T1 Transmit -3dB Point Transmit -3dB Point TSI RTR/TM - Compliant 32 13 292 14 dBm E1 Transmit -3dB Point See Test Method Section, txBoost = 0 13 292 14 dBm Pulse Output See Test Method Section, txBoost = 0 13 292 V V Output Resistancel ⁽⁰⁾ DC to 1MHz 292 V V V Common-Mode Voltage, V _{GM} DC to 1MHz AV _{p0} /2 V V V Uncancelled Echol ⁽⁵⁾ rxGAIN = 0dB, Loopback Disabled -71 -68.5 dB rxGAIN = 3dB, Loopback Disabled -74 -71 dB -76 -73.5 dB Digit Levels V _i -76 -73.5 dB V -76 -75				5		/0F3K\/
Output Bit Rate, rxSYNC ⁽³⁾ 64 1168 kbits/sec TRANSMIT CHANNEL Transmit CoR Rate, f _u , T1 Transmit -3dB Point Symbol Rate ETSI RTR/TM - Compliant 32 584 kHz ET Transmit -3dB Point ETSI RTR/TM - Compliant 13 292 kHz ET transmit -3dB Point ETSI RTR/TM - Compliant 292 kHz kHz ET transmit Power ^(4, 5) See Test Method Section, txBoost = 0 13 292 kHz Use Output See Test Method Section, txBoost = 0 13 292 kHz Common-Mode Voltage, V _{CM} DC to 1MHz 14 dBm dBm Transmit Power ^(4, 5) DC to 1MHz AV _{D0} /2 V Q Transmit Power ^(4, 5) Procent Procent Performance Curves V Q Procent Procent Performance Curves V Common-Mode Voltage, V _{CM} OC to 1MHz AV _{D0} /2 V Q Procent Procent Performance Curves V Uncancelled Echo ⁽⁵⁾ MRAIN = 3dB, Loopback Disabled -71 -68.5 dB Cogic Levels V _H -76 -75.5	1 8	Two's Complement	22		504	141.1-
TRANSMIT CHANNEL TRANSMIT CHANNEL Transmit Clock Rate, It, T1 transmit-3dB Point T1 transmit-3dB Point E1 transmit-3dB Point Point-3dB Point E1 transmit-3dB Point Point-3dB Poin						
Transmit Clock Rate, f _{tx} T1 Transmit -3dB Point Symbol Rate ETSI RTR/TM - Compliant 32 32 584 kHz 11 Transmit -3dB Point ETSI RTR/TM - Compliant 13 14 dBm E1 Transmit -3dB Point ETSI RTR/TM - Compliant 292 4 kHz E1 Transmit -3dB Point ETSI RTR/TM - Compliant 292 4 kHz E1 Transmit -3dB Point See Test Method Section, txBoost = 0 292 4 kHz Pulse Output Common-Mode Voltage, V _{CM} DC to 1MHz 14 dBm TRANSCEIVER PERFORMANCE rxGAIN = 0dB, Loopback Enabled -771 -68.5 dB rxGAIN = 0dB, Loopback Disabled -774 -71 dB 29 dB rxGAIN = 0dB, Loopback Disabled -76 -73.5 dB dB dB rxGAIN = 3dB, Loopback Disabled -76 -73.5 dB 20 -77.5 dB Digital INTERFACE(9) Logic Levels V _H 0 _H = -20µA DV _{ob} -0.3 V V V _H V _H 0 _H = -20µA	Output Bit Rate, rxSYNC ⁽³⁾		64		1168	KDIts/sec
T1 Transmit -3dB Point T1 Rate Power ^(4, 5) Dita -3dB Point E1 Transmit -3dB Point E1 Transmit Power ^(4, 5) Duse Output Common-Mode Voltage, V_{CM} Output Resistance ⁽⁶⁾ ETSI RTR/TM - Compliant See Test Method Section, txBoost = 01314dBmSee Test Method Section, txBoost = 0 Utse Output Common-Mode Voltage, V_{CM} Output Resistance ⁽⁶⁾ DC to 1MHz14dBmTRANSCEIVER PERFORMANCE Uncancelled Echol ⁽⁶⁾ DC to 1MHz10 $AV_{DO}/2$ VTRANSCEIVER PERFORMANCE Uncancelled Echol ⁽⁶⁾ rxGAIN = 0dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled rxGAIN = 12dB Loopback Disabled rxGAIN = 12dB Loopback Disabled rxGAIN = 12dB Loopback Disabled rxGAIN = 20µA -71 -78 -75.5 -77.5 -77.5 DIGITAL INTERFACE(%) Logic Levels V _H V _H V _{GL} V _{GL} t _A Interface $II_{H_1} < 10\muA$ $II_{H_2} < 10\muAII_{H_2} < 20\muADV_{DD} - 1-0.3DV_{DD} - 0.5V-0.4VVV_{DL}-0.3V V_{DD} - 0.5VVV_{DL}V_{DL}V_{DL}V_{DL} = 20\muADV_{DD} - 1-0.3V V_{DD} - 0.5VVVV_{DL}V_{DL} + 0.4VVV_{DL}V_{DL} - 0.5VVV_{DL}Dryper Dissipation(4, 6)Power Dissipation(4, 6)SpecificationAV_{DD} = 5V3.155.25V300VVVVV_{DD} = 5VNNN_{DD} = 5VNNNNN_{DD} = 5VN$	TRANSMIT CHANNEL					
T1 Transmit -3dB Point T1 Rate Power ^(4, 5) ETSI RTR/TM - Compliant See Test Method Section, txBoost = 0 13 14 dBm E1 Transmit -3dB Point E1 Transmit Power ^(4, 5) DETSI RTR/TM - Compliant See Test Method Section, txBoost = 0 13 14 dBm Valse Output Common-Mode Voltage, V _{CM} DC to 1MHz 14 dBm TRANSCEIVER PERFORMANCE Uncancelled Echol® DC to 1MHz 14 dBm TXAANN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled -71 -68.5 dB DIGITAL INTERFACE(%) Logic Levels III _H < 10µA	Transmit Clock Rate, f _{tx}	Symbol Rate	32		584	kHz
Ti Rate Power ^(4, 5) E1 Transmit -3dB Point E1 Transmit -3dB Point E1 Transmit -3dB Point E1 Transmit -3dB Power ^(4, 5) Pulse Output Common-Mode Voltage, V_{CM} Output Residence ⁽⁶⁾ See Test Method Section, txBoost = 0 ETSI RTR/TM - Compliant See Test Method Section, txBoost = 01314 292dBm kHz ddmTRANSCEIVER PERFORMANCE Uncancelled Echol ⁽⁵⁾ DC to 1MHz14JdmJdmJdmTRANSCEIVER PERFORMANCE Uncancelled Echol ⁽⁵⁾ rxGAIN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 20gL Loopback Disabled rxGAIN = 20gLA V V _{0L} V _{0L} V _{0L} V _{0L} = 20µADV DV DV D DV D DV D DV D DV D D DV D D DV D D D D D DV D <td></td> <td></td> <td></td> <td>196</td> <td></td> <td>kHz</td>				196		kHz
E1 Transmit -3dB Point E1 Transmit Power ^(4, 5) Pulse Output Common-Mode Voltage, V _{CM} Output Resistance ⁽⁹⁾ TRANSCEIVER PERFORMANCE Uncancelled Echo ⁽⁵⁾ TRANSCEIVER PERFORMANCE Uncancelled Echo ⁽⁵⁾ TRGAIN = 0dB, Loopback Enabled TRGAIN = 0dB, Loopback Disabled TRGAIN = 9dB, Loopback Disabled TRGAIN = 9dB, Loopback Disabled TRGAIN = 12dB, Loopback Disabled TRGAIN = 12dB, Loopback Disabled TRGAIN = 12dB, Loopback Disabled TRGAIN = 12dB, Loopback Disabled TRGAIN = 2dB, Loopback Disabl			13		14	
E1 Transmit Power ^(4, 5) Pulse Output Common-Mode Voltage, V _{CM} Output Resistance ⁽⁶⁾ TRANSCEIVER PERFORMANCE Uncancelled Echo ⁽⁵⁾ TRANSCEIVER PERFORMANCE Uncancelled Echo ⁽⁵⁾ TRGAIN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 20µA V _{IL} V _L V _D V _L V _L V _L V _D V _L V _D V _D V _L V _D V _D V _D V _D V _D TI -68.5 dB TEMPERATURE S COPPER Analog Power Supply Voltage Digital Power Supply Voltage Analog Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Analog Power Supply Voltage Digital Power Suphi Vol				292		
Pulse Output Common-Mode Voltage, V_{CM} Output Resistance ⁽⁶⁾ DC to 1MHzSee Typical Performance Curves $AV_{D0}/2$ V V Q QTRANSCEIVER PERFORMANCE Uncancelled Echo ⁽⁶⁾ rxGAIN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 6dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 20µA-71-68.5dBDIGITAL INTERFACE(*) Logic Levels V _H V _H V _L V _{OH} V _{OL} t _{xt1} InterfaceII_HI < 10µA V _{DL} = 20µADV_{DD} -1 -0.3 DV_{DD} -5DV_{DD} +0.3 V V V V V V V V = 20µADV_{DD} -1 -0.3 V OD V V V V V V V V VOH V _{OL} = 20µADV_{DD} -1 -0.3 V V V V V V V V V V V V V Operating Range V V N Dever Supply Voltage Power Supply Voltage Power Supply Voltage Power Supply Voltage Power Dissipation(4.5) Power Dissipation(4.5) PSRRSpecification Operating Range AV VDD = 5V SOB5V V SOB<			13		14	
Common-Mode Voltage, V_{CM} Output Resistance(6)DC to 1MHzAV_{DD}/2V QTRANSCEIVER PERFORMANCE Uncancelled Echo(6)rxGAIN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 3dB, Loopback Disabled rxGAIN = 12dB, Loopback Disabled rxGAIN = 12				1 nical Performan		abiii
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			OCC Ty			V
TrANSCEIVER PERFORMANCE Uncancelled Echol(5)rxGAIN = 0dB, Loopback Enabled rxGAIN = 0dB, Loopback Disabled rxGAIN = 0dB, Loopback Disabled 	Output Resistance ⁽⁶⁾	DC to 1MHz				
Uncancelled Echo ⁽⁵⁾ rxGAIN = 0dB, Loopback Enabled -71 -68.5 dB rxGAIN = 0dB, Loopback Disabled rxGAIN = 0dB, Loopback Disabled -71 -68.5 dB rxGAIN = 6dB, Loopback Disabled rxGAIN = 6dB, Loopback Disabled -74 -71 dB rxGAIN = 9dB, Loopback Disabled rxGAIN = 6dB, Loopback Disabled -76 -73.5 dB Logic Levels -78 -75.5 dB -77.5 dB V _{IH} 1/ _{HL} < 10µA						52
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{tabular}{ c c c c c c c } & rxGAIN = 3dB, Loopback Disabled \\ rxGAIN = 6dB, Loopback Disabled \\ rxGAIN = 9dB, Loopback Disabled \\ rxGAIN = 9dB, Loopback Disabled \\ rxGAIN = 12dB, Loopback Disabled \\ \hline \end{tabular} & -76 & -73.5 & dB \\ \hline \end{tabular} & -78 & -75.5 & dB \\ \hline \end{tabular} & -80 & -77.5 & dB \\ \hline \end{tabular} & -90 & -1 & -0.3 & -0.3 & -7.5 & -0.5 & -7.5 & -$	Uncancelled Echo ⁽⁵⁾					
rxGAIN = 6dB, Loopback Disabled rxGAIN = 9dB, Loopback Disabled -76 -78 -73.5 -75.5 dB dBDIGITAL INTERFACE ⁽⁹⁾ Logic Levels $I I_{H} < 10\mu A$ V_{L} $DV_{DD} - 1$ V_{L} $DV_{DD} + 0.3$ V_{OL} V V_{OL} I_{Tx1} Interface $DV_{DD} - 1$ $I_{OL} = 20\mu A$ $I_{OL} = 20\mu A$ $DV_{DD} - 0.5$ $DV_{DD} + 0.3$ $V V_{OL}I_{Tx1} InterfaceVV_{OL}I_{Tx1} InterfacePOWERAnalog Power Supply VoltageDigital Power Supply VoltageDigital Power Supply VoltageDigital Power Supply VoltageDigital Power Supply VoltageDV_{DD} = 5VSpecificationAV_{DD} = 5V, DV_{DD} = 3.3V,AV_{DD} = 5V, DV_{DD} = 5VStabledVVV_{OD}POWERAnalog Power Supply VoltageDigital Power Supply VoltageDV_{DD} = 5V, DV_{DD} = 5VStabledVV_{OD}Power Dissipation(4.5)PSRRAV_{DD} = DV_{DD} = 5VStabledStabledVV_{OD}TEMPERATURE RANGEVVV$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-71	dB
rxGAIN = 12dB, Loopback Disabled80-77.5dBDIGITAL INTERFACE(6) Logic Levels $II_{H } < 10\muA$ $DV_{DD} - 1$ $DV_{DD} + 0.3$ V V_{IH} $II_{H } < 10\muA$ $DV_{DD} - 1$ $DV_{DD} + 0.3$ V V_{IL} $II_{H } < 10\muA$ $DV_{DD} - 0.5$ V V V_{OH} $I_{OL} = -20\muA$ $DV_{DD} - 0.5$ V V V_{OL} $I_{OL} = 20\muA$ $DV_{DD} - 0.5$ V V I_{rx1} Interface914nsPOWERAnalog Power Supply VoltageOperating Range4.755.25VDigital Power Supply VoltageOperating Range3.155.25VDigital Power Supply Voltage $Operating Range$ 3.155.25VDigital Power Supply Voltage $AV_{DD} = 5V$, $DV_{DD} = 3.3V$, 250 mWPower Dissipation ^(4, 5) $AV_{DD} = DV_{DD} = 5V$ 300 mWPSRR55dBdBTEMPERATURE RANGE5dB					-73.5	dB
DiGITAL INTERFACE(6) Logic Levels $U_{IH} = 10\mu A$ V_{IL} $DV_{DD} = 1$ -0.3 $DV_{DD} + 0.3$ $+0.8$ V V V_{OL} V_{IL} V_{OL} V_{OL} $U_{IL} = 10\mu A$ $I_{OH} = -20\mu A$ $I_{OL} = 20\mu A$ $DV_{DD} = 0.5$ V $DV_{DD} = 0.5$ V V $+0.4$ V V $+0.4$ POWER Analog Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Power Dissipation(4, 5) Power Dissipation(4, 5)Specification $AV_{DD} = 5V$, $DV_{DD} = 3.3V$, $AV_{DD} = 5V$, $DV_{DD} = 3.3V$, $AV_{DD} = 5V$ S_{250} MW S_{55} MW MW TEMPERATURE RANGEImage: Distribution of the second		rxGAIN = 9dB, Loopback Disabled		-78	-75.5	dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		rxGAIN = 12dB, Loopback Disabled		-80	-77.5	dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DIGITAL INTERFACE ⁽⁶⁾					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Logic Levels					
V_{IL} V_{OH} V_{OL} V_{OL} V_{OL} I_{rx1} Interface $II_{IL} < 10\mu A$ $I_{OH} = -20\mu A$ $I_{OL} = 20\mu A$ -0.3 $DV_{DD} -0.5$ $+0.8$ V V $+0.4$ V V V $+0.4$ POWER Analog Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Power Dissipation ^(4, 5) Power Dissipation ^(4, 5) PSRRSpecification $AV_{DD} = DV_{DD} = 5V$ -0.3 $DV_{DD} = 5V$ $+0.8$ V V 3.3 V V V 300 TEMPERATURE RANGEII $III = 0$ $III_{IL} < 10\mu A$ $III_{IL} < 10\mu A$ $IIII_{IL} < 10\mu A$ $IIII_{IL} < 10\mu A$ $IIII_{IL} < 10\mu A$ $IIII_{IL} < 10\mu A$ $IIIII_{IL} < 10\mu A$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	V _{IH}	I _{IH} < 10µА	DV _{DD} –1		DVpp +0.3	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						v
V_{OL} tx1 Interface $I_{OL} = 20\mu A$ $+0.4$ V 14 POWER Analog Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Power Dissipation ^(4, 5) PSRRSpecification Specification $AV_{DD} = 5V, DV_{DD} = 3.3V, AV_{DD} = DV_{DD} = 5V$ $+0.4$ V 14 V 14 POWER $A.ralog Power Supply VoltageDigital Power Supply VoltagePower Dissipation(4, 5)PSRRSpecification3.155.25V5.25POWERAV_{DD} = DV_{DD} = 5V, DV_{DD} = 3.3V, AV_{DD} = DV_{DD} = 5V3.00mW300TEMPERATURE RANGEII$						V
trx1 Interface914nsPOWER Analog Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Power Dissipation ^(4, 5) PSRRSpecification Operating Range Specification55.25VANADOG POWER Supply Voltage Digital Power Supply Voltage Power Dissipation ^(4, 5) PSRROperating Range Specification3.155.25VAVDD = 5V, DVDD = 3.3V, AVDD = 5VAVDD = 3.3V, Specification3.00mWmWPower Dissipation ^(4, 5) PSRRMDMMTEMPERATURE RANGEImage SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationVPower Dissipation ^(4, 5) PSRAVDD = 5V, DVDD = 3.3V, AVDD = 5VSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationPower Dissipation ^(4, 5) PSRAVDD = 5V, DVDD = 5VSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationPower Dissipation ^(4, 5) PSRAVDD = DVDD = 5VSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification SpecificationSpecification Spe		$l_{\alpha} = 20 \mu A$			+0.4	
POWER Specification 5 V Analog Power Supply Voltage Operating Range 4.75 5.25 V Digital Power Supply Voltage Operating Range 3.3 V V Digital Power Supply Voltage Operating Range 3.15 5.25 V Digital Power Supply Voltage Operating Range 3.15 5.25 V Power Dissipation ^(4, 5) Power Dissipation ^(4, 5) AV _{DD} = 5V, DV _{DD} = 3.3V, AV _{DD} = 5V 300 mW PSRR TEMPERATURE RANGE 55 dB		OL TOPUT	9		-	
Analog Power Supply Voltage Specification 5 V Analog Power Supply Voltage Operating Range 4.75 5.25 V Digital Power Supply Voltage Operating Range 3.3 V Digital Power Supply Voltage Operating Range 3.15 5.25 V Digital Power Supply Voltage Operating Range 3.15 5.25 V Power Dissipation ^(4, 5) PV _{DD} = 5V, DV _{DD} = 3.3V, AV _{DD} = 5V, DV _{DD} = 5V 250 mW PSRR XV _{DD} = DV _{DD} = 5V 300 mW TEMPERATURE RANGE Image: Specification Speci			•			
Analog Power Supply Voltage Operating Range 4.75 5.25 V Digital Power Supply Voltage Specification 3.3 V Digital Power Supply Voltage Operating Range 3.15 5.25 V Power Dissipation ^(4, 5) Power Dissipation ^(4, 5) POWer Dissipation ^(4, 5) POWer Dissipation ^(4, 5) 250 mW PSRR S5 dB						
Digital Power Supply Voltage Specification 3.3 V Digital Power Supply Voltage Operating Range 3.15 5.25 V Power Dissipation ^(4, 5) AV _{DD} = 5V, DV _{DD} = 3.3V, AV _{DD} = DV _{DD} = 5V 300 mW PSRR 55 dB				5		
Digital Power Supply Voltage Operating Range 3.15 5.25 V Power Dissipation ^(4, 5) AV _{DD} = 5V, DV _{DD} = 3.3V, AV _{DD} = DV _{DD} = 5V 250 mW PSRR 300 mW 55 dB			4.75		5.25	
Power Dissipation $(4, 5)$ $AV_{DD} = 5V$, $DV_{DD} = 3.3V$, $AV_{DD} = DV_{DD} = 5V$ 250mWPower Dissipation $(4, 5)$ $AV_{DD} = DV_{DD} = 5V$ 300mWPSRR55dB				3.3		
Power Dissipation ^(4, 5) AV _{DD} = DV _{DD} = 5V 300 mW PSRR 55 dB TEMPERATURE RANGE			3.15		5.25	
Power Dissipation ^(4, 5) AV _{DD} = DV _{DD} = 5V 300 mW PSRR 55 dB TEMPERATURE RANGE	Power Dissipation ^(4, 5)			250		mW
PSRR 55 dB	Power Dissipation ^(4, 5)			300		mW
	PSRR			55		dB
	TEMPERATURE RANGE					
ODerating -40 $+85$ 1 °C.	Operating ⁽⁶⁾		-40		+85	°C

NOTES: (1) With a balanced differential signal, the positive input is 180° out of phase with the negative input, therefore the actual voltage swing about the common mode voltage on each pin is ±1.5V to achieve a total input range of ±3.0V or 6Vp-p. (2) FSR is Full-Scale Range. (3) The output data is available at twice the symbol rate with interpolated values. (4) With a pseudo-random equiprobable sequence of HDSL pulses; 13.5dBm applied to the transformer (16.5dBm output from txLINEP and txLINEN). (5) See the Discussion of Specifications section of this data sheet for more information. (6) Guaranteed by design and characterization.

2

PIN CONFIGURATION

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE
AFE1124E	28-Pin SSOP	324	-40 to +85

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

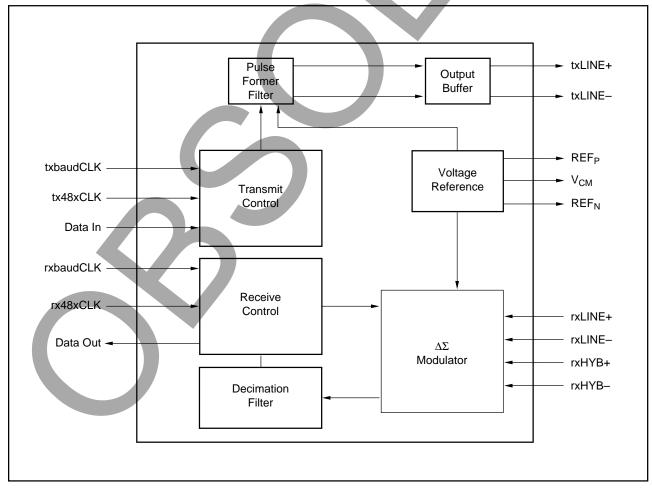
ABSOLUTE MAXIMUM RATINGS

Analog Inputs: Current
±10mA, Continuous
Voltage AGND –0.3V to AV _{DD} +0.3V
Analog Outputs Short Circuit to Ground (+25°C) Continuous
AV _{DD} to AGND0.3V to 6V
DV _{DD} to DGND0.3V to 6V
Digital Input Voltage to DGND0.3V to DV _{DD} +0.3V
Digital Output Voltage to DGND0.3V to DV _{DD} +0.3V
AGND, DGND, Differential Voltage0.3V
Junction Temperature (T _J)+150°C
Storage Temperature Range40°C to +125°C
Lead Temperature (soldering, 3s)+260°C
Power Dissipation

ELECTROSTATIC DISCHARGE SENSITIVITY

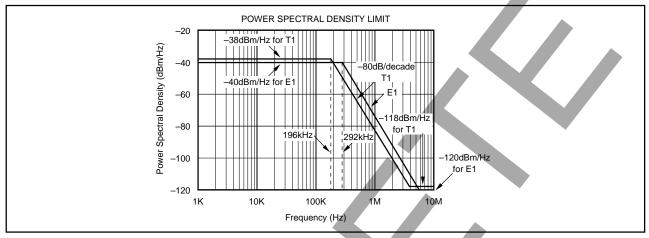
This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

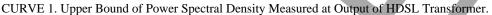
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

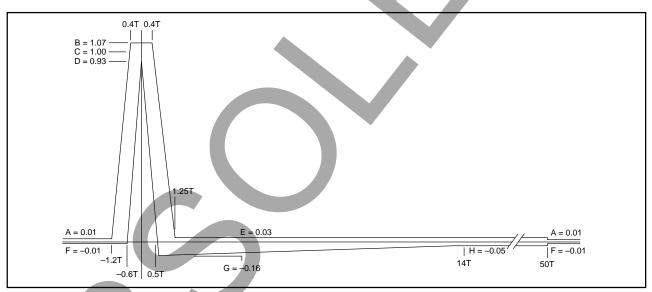

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

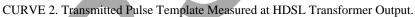
PIN DESCRIPTIONS

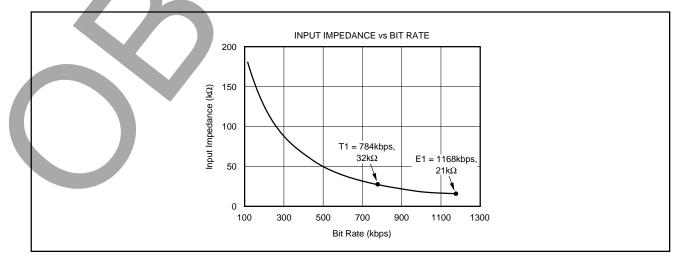
PIN #	TYPE	NAME	DESCRIPTION
1	No Connection	NC	
2	No Connection	NC	
3	Power	DV _{DD}	Digital Supply (+3.3 to +5V)
4	Ground	DGND	Digital Ground
5	Input	txbaudCLK	Transmit Baud Clock (584kHz for E1)
6	Input	tx48xCLK	Transmit Clock at 48x baud clock (28.032MHz for E1)
7	Input	Data In	Input Data Word
8	Input	rxbaudCLK	Receive baud clock (584kHz for E1)
9	Input	rx48xCLK	Receive clock at 48x baud clock (28.032MHz for E1)
10	Output	Data Out	Output Data Word
11	Power	DV _{DD}	Digital Supply (+3.3 to +5V)
12	Ground	DGND	Digital Ground
13	Power	AV _{DD}	Analog Supply (+5V)
14	Input	rxHYB–	Negative input from hybrid network
15	Input	rxHYB+	Positive input from hybrid network
16	Input	rxLINE-	Negative line input
17	Input	rxLINE+	Positive line input
18	Ground	AGND	Analog Ground
19	Output	vrREFP	Positive reference output
20	Output	VCM	Common-mode voltage (buffered)
21	Output	vrREFN	Negative reference output
22	Power	AVDD	Analog Supply (+5V)
23	Ground	AGND	Analog Ground
24	Output	txLINE-	Negative line output
25	Power	AV _{DD}	Output buffer supply (+5V)
26	Output	txLINE+	Positive line output
27	Ground	AGND	Output buffer ground
28	No Connection	NC	


BLOCK DIAGRAM






TYPICAL PERFORMANCE CURVES At Output of HDSL Pulse Transformer


The curves shown below are measured at the line output of the HDSL transformer. Typical at 25°C, AV_{DD}+ = +5V, DV_{DD}+ = +3.3V, f_{TX} = 1168kHz, unless otherwise specified.

CURVE 3. Input Impedance of rxLINE and rxHYB.

THEORY OF OPERATION

The AFE1124 consists of a transmit and a receive channel. It interfaces to the HDSL DSP through a six wire serial interface, three wires for the transmit channel and three wires for the receive channel. It interfaces to the HDSL telephone line transformer and external compromise hybrid through transmit and receive analog connections.

The transmit channel consists of a switched-capacitor pulse forming network followed by a differential line driver. The pulse forming network receives 2-bit digital symbol data and generates a filtered 2B1Q analog output waveform. The differential line driver uses a composite output stage combining class B operation (for high efficiency driving large signals) with class AB operation (to minimize crossover distortion).

The receive channel is designed around a fourth-order delta sigma A/D converter. It includes a difference amplifier designed to be used with an external compromise hybrid for first order analog echo cancellation. A programmable gain amplifier with gains of 0dB to +12dB is also included. The delta sigma modulator operating at a 24X oversampling ratio produces a 14-bit output at rates up to 584kHz (1.168Mbps).

The receive channel operates by summing the two differential inputs, one from the line (rxLINE) and the other from the compromise hybrid (rxHYB). The connection of these two inputs so that the hybrid signal is subtracted from the line signal is described in the paragraph titled "Echo Cancellation in the AFE". The equivalent gain for each input in the difference amp is one. The resulting signal then passes to a programmable gain amplifier which can be set for gains of 0dB through +12dB. Following the PGA, the ADC converts the signal to a 14-bit digital word.

The serial interface consists of three wires for transmit and three wires for receive. The three wire transmit interface is transmit baud rate clock, transmit 48x oversampling clock and Data Out. The three wire receive interface is receive baud rate clock, receive 48x oversampling clock and Data In. The transmit and receive clocks are supplied to the AFE1124 from the DSP and are completely independent.

DIGITAL DATA INTERFACE

Data is received by the AFE1124 from the DSP on the Data In line. Data is transmitted from the AFE1124 to the DSP on the Data Out line. The paragraphs below describe the timing of these signals and data structure.

Data is transmitted and received in synchronization with the 48x transmit and receive clocks (tx48xCLK and rx48xCLK).

There are 48-bit times in each baud period. Data In is

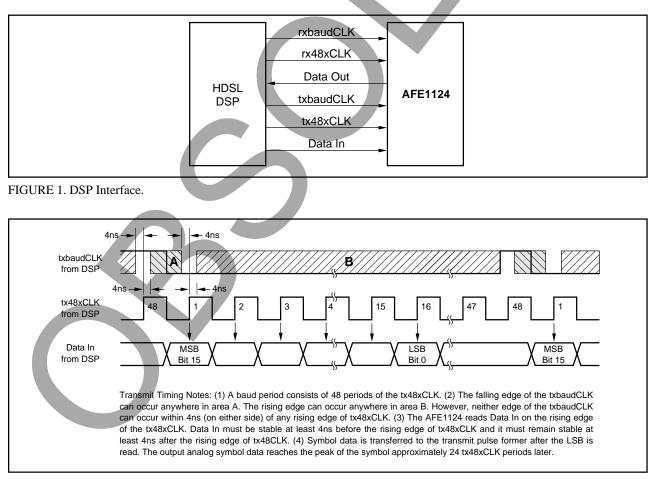


FIGURE 2. Transmit Timing Diagram.

received in the first 16 bits of each baud period. The remaining 32-bit periods are not used for Data In. Data Out is transmitted during the first 16 bits of the baud period. A second interpolated value is transmitted in subsequent bits of the baud period.

txbaudCLK: The transmit data baud rate, generated by the DSP. It is 392kHz for T1 or 584kHz for E1. It may vary from 32kHz (64kbps) to 584kHz (1.168Mbps).

tx48xCLK: The transmit pulse former oversampling sampling clock, generated by the DSP. It is 48x the transmit symbol rate or 28.032MHz for 584kHz symbol rate. This clock should run continuously.

Data In: This is a 16-bit output data word sent from the DSP to the AFE. The sixteen bits include tx symbol information and other control bits, as described below. The data should be clocked out of the DSP on the falling edge and it should

be valid on the rising edge of the tx48xCLK. The AFE1124 reads Data In on the rising edge of the tx48xCLK. The bits are defined in Table I. Data In is read by the AFE1124 during the first 16 bits periods of each baud period. Only the first 8 bits are used in the AFE1124. The second 8 bits are reserved for use in the future products. The remaining 32 bits periods of the baud period are not used for Data In.

Data In Bits:

tx enable signal—This bit controls the tx Symbol definition bits. If this bit is 0, only a 0 symbol is transmitted regardless of the state of the tx Symbol definition bits. If this bit is 1, the tx Symbol definition bits determine the output symbol.

tx Symbol Definition—These two bits determine the output 2B1Q symbol transmitted.

Rx Gain Settings—These bits set the gain of the receive channel programmable gain amplifier.

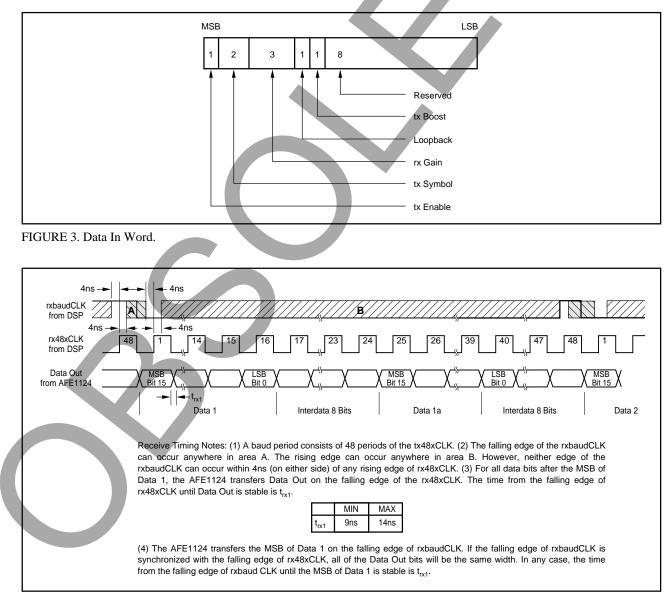
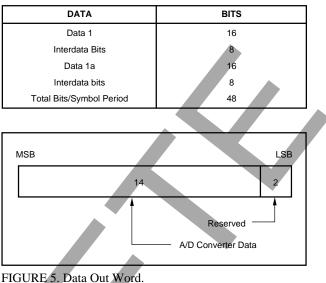


FIGURE 4. Receive Timing Diagram.

Loopback Control—This bit controls the operation of loopback. When enabled (logic 1), the rxLINE+ and rxline– inputs are disconnected from the AFE. The rxHYB+ and rxHYB– inputs remain connected. When disabled, the rxLINE+ and rxLINE– inputs are connected.

txBoost—This bit controls the addition of 0.5dB additional power to the output line driver.

BIT	DESCRIPTION	BIT STATE	OUTPUT STATE
15 (MSB)	tx Enable Signal	0 1	AFE Transmits a 0 Symbol AFE Transmits HDSL Symbol as defined by bits 14 and 13
14 and 13	tx Symbol Definition	00	-3 Transmit Symbol
		01	–1 Transmit Symbol
		11	+1 Transmit Symbol
		10	+3 Transmit Symbol
12 - 10	rx Gain Settings	000	rx gain in AFE 0dB
		001	rx gain in AFE 3dB
		010	rx gain in AFE 6dB
		011	rx gain in AFE 9dB
		100	rx gain in AFE 12dB
		101	rx gain in AFE Reserved
		110	rx gain in AFE Reserved
		111	rx gain in AFE Reserved
9	Loopback Control	1	Loopback Mode
		0	Normal Operation
8	tx Boost	0	Normal Transmit Power
		1	+0.5dB Transmit Power Boost
7 - 0	SPARE		NA


TABLE I. Data In.

rxbaudCLK: This is the receive data baud rate (symbol clock), generated by the DSP. It is 392kHz for T1 or 584kHz for E1. It can vary from 32kHz (64kbps) to 584kHz (1.168Mbps).

rx48xCLK: This is the A/D converter over-sampling clock, generated by the DSP. It is 48x the receive symbol rate or 28.032MHz for 584kHz symbol rate. This clock should run continuously.

Data Out: This is the 14-bit A/D converter output data (+2 spare bits) sent from the AFE to the DSP. The 14 bits from the A/D Converter will be the upper bits of the 16-bit word (bits 15-2). The spare bits (1 and 0) will be always be low. Eight additional (interdata) bits follow which are always high. The data is clocked out on the falling edge of rx48xCLK. The bandwidth of the A/D converter decimation filter is equal to one half of the symbol rate. The nominal output rate of the A/D converter is one conversion per symbol period. For more flexible post processing, there is a second interpolated A/D conversion available in each symbol period. In Figure 4, the first conversion is shown as Data 1 and the second conversion is shown as Data 1a. It is suggested that rxbaudCLK is used with the rx48xCLK to read Data 1 while Data 1a is ignored. However, either or both outputs may be used for more flexible post-processing.

DATA OUT PER SYMBOL PERIOD

ANALOG-TO-DIGITAL CONVERTER DATA

The A/D converter data from the receive channel is coded in twos complement.

ANALOG INPUT	A/D CONVERTER DATA				
	MSB LSB				
Positive Full Scale	0111111111111				
Mid Scale	0000000000000				
Negative Full Scale	1000000000000				

ECHO CANCELLATION IN THE AFE

The rxHYB input is subtracted from the rxLINE input for first order echo cancellation. For correct operation, be certain that the rxLINE input is connected to the same polarity signal at the transformer (+ to + and - to -) while the rxHYB input is connected to opposite polarity through the compromise hybrid (- to + and + to -) as shown in the Basic Connection Diagram.

SCALEABLE TIMING

The AFE1124 scales operation with the clock frequency. All internal filters and the pulse former change frequency with the clock speed so that the unit can be used at different frequencies just by changing the clock speed.

For the receive channel, the digital filtering of the delta sigma converter scales directly with the clock speed. The bandwidth of the converter's decimation filter is always one-half of the symbol rate. The only receive channel issue in changing baud rate is the passive single pole anti-alias filter (see the following section). For systems implementing a broad range of speeds, selectable cutoff frequencies for the passive anti-alias filter should be used.

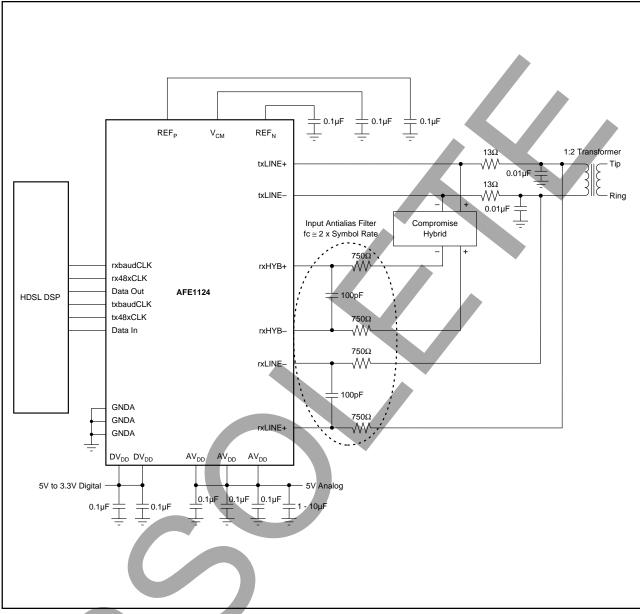


FIGURE 6. Basic Connection Diagram.

For the transmit channel, the pulse shape and the power spectral density scale directly with the clock rate. The power spectral density shown in Curve 1 and the pulse template shown in Curve 2 are measured at the output of the transformer. The transformer and the RC circuit on the output provide some smoothing for the output transmission. At lower bit rates, the amount of smoothing will be less.

RXHYB AND RXLINE INPUT ANTI-ALIASING FILTERS

An external input antialiasing filter is needed on the hybrid and line inputs as shown in the Basic Connection Diagram above. The -3dB frequency of the input anti-aliasing filter for the rxLINE and rxHYB differential inputs should be approximately 1MHz for T1 and E1 symbol rates. Suggested values for the filter are 750Ω for each of the two input resistors and 100pF for the capacitor. Together the two 750Ω resistors and the 100pF capacitor result in a 3dB frequency of just over 1MHz. The 750Ω input resistors will result in minimal voltage divider loss with the input impedance of the AFE1124.

The antialiasing filters will give best performance with 3dB frequency approximately equal to the bit rate. For instance, a 3dB frequency of 320kHz may be used for a single line bit rate of 320k bits per second.

DISCUSSION OF SPECIFICATIONS

UNCANCELED ECHO

A key measure of transceiver performance is uncancelled echo. Uncancelled echo is the summation of all of the errors in the transmit and receive paths of the AFE1124. It includes effects of linearity, distortion and noise. Uncancelled echo is tested in production by Burr-Brown with a circuit that is similar to the one shown in Figure 7, Uncancelled Echo Test Diagram.

The measurement of uncancelled echo is made as follows.

The AFE is connected to an output circuit including a typical 1:2 line transformer. The line is simulated by a 135Ω resistor. Symbol sequences are generated by the tester and applied both to the AFE and to the input of an adaptive filter. The output of the adaptive filter is subtracted from the AFE output to form the uncanceled echo signal. Once the filter taps have converged, the RMS value of the uncancelled echo is calculated. Since there is no far-end signal source or additive line noise, the uncanceled echo contains only noise and linearity errors generated in the transmit and receive sections of the AFE1124.

The data sheet value for uncancelled echo is the ratio of the RMS uncanceled echo (referred to the receiver input through the receiver gain) to the nominal transmitted signal (13.5dBm into 135Ω , or 1.74Vrms). This echo value is measured under a variety of conditions: with loopback enabled (line input disconnected); with loopback disabled under all receiver gain ranges; and with the line shorted (S₁ closed in Figure 7).

POWER DISSIPATION

Approximately 80% of the power dissipation in the AFE1124 is in the analog circuitry, and this component does not change with clock frequency. However, the power dissipation in the digital circuitry does decrease with lower clock frequency. In addition, the power dissipation in the digital section is decreased when operating from a smaller supply voltage, such as 3.3V. (The analog supply, AV_{DD} , must remain in the range 4.75V to 5.25V).

The power dissipation listed in the specifications section applies under these normal operating conditions: 5V Analog Power Supply; 3.3V Digital Power Supply; standard 13.5dBm delivered to the line; and a pseudo-random equiprobable sequence of HDSL output pulses. The power dissipation specifications includes all power dissipated in the AFE1124, it does not include power dissipated in the external load. The external power is 16.5dBm: 13.5dBm to the line and 13.5dBm to the impedance matching resistors. The external load power of 16.5dBm is 45mW. The typical power dissipation in the AFE1124 under various conditions is shown in Table II.

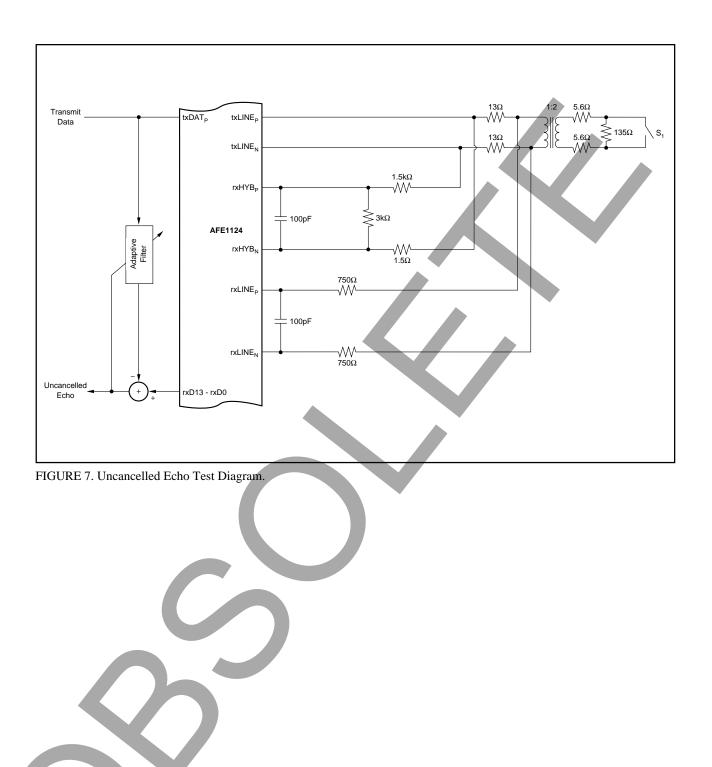
The T1 and E1 power measurements in the Specifications are made with the output circuit shown in Figure 7. This

BIT RATE PER AFE1124 (Symbols/sec)	DVDD (V)	TYPICAL POWER DISSIPATION IN THE AFE1124 (mW)
584 (E1)	3.3	250
584 (E1)	5	300
392 (T1)	3.3	240
392 (T1)	5	270
146 (E1/4)	3.3	230
146 (E1/4)	5	245

TABLE II. Typical Power Dissipation.

circuit uses a 1:2 transformer. The power measurements shown in Table II use an equivalent resistive load instead of the transformer to eliminate frequency dependent impedances of the transformer.

LAYOUT


The analog front end of an HDSL system has two conflicting requirements. It must accept and deliver moderately high rate digital signals and it must generate, drive, and convert precision analog signals. To achieve optimal system performance with the AFE1124, both the digital and the analog sections must be treated carefully in board layout design.

The power supply for the digital section of the AFE1124 can range from 3.3V to 5V. This supply should be decoupled to digital ground with ceramic 0.1μ F capacitors placed as close to DGND and DV_{DD} as possible. One capacitor should be placed between pins 3 and 4 and the second capacitor between pins 11 and 12. Ideally, both a digital power supply plane and a digital ground plane should run up to and underneath the digital pins of the AFE1124 (pins 5 through 10). However, DV_{DD} may be supplied by a wide printed circuit board (PCB) trace. A digital ground plane underneath all digital pins is strongly recommended.

The remaining portion of the AFE1124 should be considered analog. All AGND pins should be connected directly to a common analog ground plane and all AV_{DD} pins should be connected to an analog 5V power plane. Both of these planes should have a low impedance path to the power supply. The analog power supply pins should be decoupled to analog ground with ceramic 0.1µF capacitors placed as close to the AFE1124 as possible. One 10µF tantalum capacitor should also be used with each AFE1124 between the analog supply and analog ground.

Ideally, all ground planes and traces and all power planes and traces should return to the power supply connector before being connected together (if necessary). Each ground and power pair should be routed over each other, should not overlap any portion of another pair, and the pairs should be separated by a distance of at least 0.25 inch (6mm). One exception is that the digital and analog ground planes should be connected together underneath the AFE1104 by a small trace.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

2-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins P	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
AFE1124E/1K	NRND	SSOP	DB	28		TBD	Call TI	Call TI		AFE1124E G	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

2-Oct-2016

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated