

MLC & SLC Capacitors Thin Film Components

www.dilabs.com

Introduction to Dielectric Laboratories Inc.

What makes DLI Unique?

DLI built its global reputation as a manufacturer of high frequency, High Q capacitors. In recent years, DLI has emerged as a comprehensive manufacturer of specialty ceramic components for application specific microwave and millimeter wave components serving customers in fiber optic, wireless, medical, transportation, semiconductor, space, avionics and military markets.

With over four decades of material science formulation and development, more than one hundred proprietary and/or patented ceramic formulations, and multiple recent patent filings, DLI is the pre-eminent ceramic component manufacturer in the industry. The marriage of ceramic expertise, manufacturing know-how, product quality, customer service, product customization, and clever microwave and RF design engineering sets us apart from all others in the industry.

DLI offers a broad range of Multi-Layer Capacitor products. We have the most comprehensive array of Broadband Blocking capacitors. We have expertise in customizing, tight tolerances and meeting specific design targets.

DLI is the preeminent global supplier of Single-Layer Capacitors. We have the world's broadest range of materials starting with Class 1 dielectrics with ξr from 5.7 to 900 and Class 2 dielectrics with ξr from 445 to 25,000. DLI specializes in high reliability and space applications.

Our Build-to-Print services designed to facilitate thin film product design, manufacturing and testing from prototype to high volume production. Our custom ceramics offer significantly better thermal performance than majority of industry standard ceramics and have an added benefit of a sufficiently higher dielectric constant (K) allowing miniaturization opportunities and temperature stable performance.

DLI continues to introduce exciting new innovations in custom ceramic resonator and filter technologies. These patent-protected products leverage decades of ceramic and Thin Film experience, creative and clever design expertise, and advanced prototyping and testing capabilities. Please discuss your needs with our Sales and Applications Engineering Team.

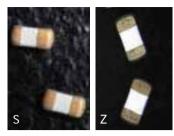
Heat Sinks and Resonator Components complete our portfolio.

RoHS Compliance Statement

DLI is a leading supplier to the electronic components market and is fully committed to offering products supporting Restriction of Hazardous Substances (RoHS) directive 2011/65/Eu. All of our Dielectric formulations are RoHS compliant and we offer a broad range of capacitors with RoHS compliant terminations. DLI complies with the requirements of the individual customer and will maintain product offerings that meet the demands of our industry.

Quality and Environmental Policy

DLI's reputation for quality and environmental responsibility is based on a commitment not only to meet our customers' requirements, but to exceed their expectations. The entire organization, beginning with top management, strives to achieve excellence in designing, manufacturing and delivering High Q capacitors and proprietary thin film components for niche high frequency applications, while maintaining safe and healthy working conditions. Furthermore, DLI commits to achieve these goals in an environmentally responsible manner through our commitment to comply with environmental regulations and implement pollution prevention initiatives. DLI strives to continually improve the effectiveness of our Quality and Environmental Management System through the establishment and monitoring of objectives and targets.


www.dilabs.com

Contents

Introduction
About Us Inside front cover
What's New at DLI
Simplified Frequency & Application Chart
Single Layer Capacitors
General Information
Packaging
Border Cap [®] 1 or 2-sided recessed metallization
Di-Cap® 1MHz to > 80GHz
Bar Cap [®] Multiple arrays
Gap Cap® to eliminate wire bonding
Bi-Cap [®] Binary Capacitor
Heatsinks, Standoffs & Submounts
Multilayer Ceramic Capacitors
Material & Case Size Summary Sheets
Application Notes
General Information
Standard Part Number System
AH Series: P90 Porcelain Capacitors
CF Series: Ultrastable Porcelain Capacitors
NA Series: N30 Porcelain Capacitors
UL Series: Ultra Low ESR Ceramic Capacitors
High Q Capacitors - C04, C06, C11 & C17 Kits
Broadband Blocking Capacitors
C04/C06/C08 Broadband Blocking Capacitor
C04/C06/C08 Broadband Blocking Capacitor
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44
C04/C06/C08 Broadband Blocking Capacitor
C04/C06/C08 Broadband Blocking Capacitor 40 Opti-Cap® Ultra Broadband DC Blocking 41-43 Milli-Cap® Millimeter Wave Broadband Blocking Capacitor 44 Miniature RF Blocking Network 45-46 Thin Film Devices 45-46
C04/C06/C08 Broadband Blocking Capacitor 40 Opti-Cap® Ultra Broadband DC Blocking 41-43 Milli-Cap® Millimeter Wave Broadband Blocking Capacitor 44 Miniature RF Blocking Network 45-46 Thin Film Devices 8 RF Guru Ceramic Filter Request Form 47
C04/C06/C08 Broadband Blocking Capacitor. 40 Opti-Cap® Ultra Broadband DC Blocking. 41-43 Milli-Cap® Millimeter Wave Broadband Blocking Capacitor. 44 Miniature RF Blocking Network. 45-46 Thin Film Devices 47 Ceramic Filters product summary. 48-49
C04/C06/C08 Broadband Blocking Capacitor. 40 Opti-Cap® Ultra Broadband DC Blocking. 41-43 Milli-Cap® Millimeter Wave Broadband Blocking Capacitor. 44 Miniature RF Blocking Network. 45-46 Thin Film Devices 47 Ceramic Filters product summary. 48-49 Filter Packaging, Shielding and Mounting 50-51
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series53
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series54
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series53
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider55
C04/C06/C08 Broadband Blocking Capacitor.40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor.44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary.48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider.55Symmetric Dual Mode Resonator Filter5620GHz 8 Pole SMT Filter56
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary.48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider55Symmetric Dual Mode Resonator Filter5610GHz 4 Pole Band Pass with Bandstop Filter5620GHz 8 Pole SMT Filter5636GHz Filter Repeatability56
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider55Symmetric Dual Mode Resonator Filter5610GHz 4 Pole Band Pass with Bandstop Filter5620GHz 8 Pole SMT Filter5636GHz Filter Repeatability56GPS Filters57
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider55Symmetric Dual Mode Resonator Filter5610GHz 4 Pole Band Pass with Bandstop Filter5636GHz Filter Repeatability5636GHz Filter Repeatability5636GHz Filter Series57High-K Ceramic Substrate and Plates58
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary.48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider55Symmetric Dual Mode Resonator Filter5610GHz 4 Pole Band Pass with Bandstop Filter5620GHz 8 Pole SMT Filter5636GHz Filter Repeatability56GPS Filters57High-K Ceramic Substrate and Plates58Ceramic Cavity Resonators59-65
C04/C06/C08 Broadband Blocking Capacitor.40Opti-Cap® Ultra Broadband DC Blocking.41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network.45-46Thin Film Devices47Ceramic Filter Request Form47Ceramic Filters product summary.48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series532-18 GHz Bandpass Filter Series56Symmetric Dual Mode Resonator Filter5610GHz 4 Pole Band Pass with Bandstop Filter5636GHz Filter Repeatability5636GHz Filter Repeatability5657High-K Ceramic Substrate and Plates58Ceramic Cavity Resonators59-65Self Bias Network63-64
C04/C06/C08 Broadband Blocking Capacitor40Opti-Cap® Ultra Broadband DC Blocking41-43Milli-Cap® Millimeter Wave Broadband Blocking Capacitor44Miniature RF Blocking Network45-46Thin Film Devices47RF Guru Ceramic Filter Request Form47Ceramic Filters product summary.48-49Filter Packaging, Shielding and Mounting50-51Filter Temperature Stability52Surface Mount Lowpass Filter Series532-18 GHz Bandpass Filter Series532-18 GHz Bandpass Filter Series54Wilkinson Power Divider55Symmetric Dual Mode Resonator Filter5610GHz 4 Pole Band Pass with Bandstop Filter5620GHz 8 Pole SMT Filter5636GHz Filter Repeatability56GPS Filters57High-K Ceramic Substrate and Plates58Ceramic Cavity Resonators59-65

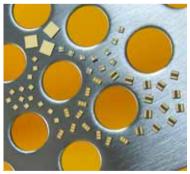
What's New at DLI

0402

0402 product line extension of Z type plating (Sn over Ni) in the C04 (0402) case size with its Ultra-Low ESR UL dielectric material. Previously the C04 product line was only available in "S" type plating (Au flash over Ni).

Plating Code	Layers	Applications
"S"	 Au Flash (3-5µ") Ni barrier Layer Ag Termination 	Specialty Solder & Epoxy
"Z"	 Sn plated solder Ni barrier layer Ag Termination	High Volume & Hand Solder

Both termination types are fully RoHS compliant Dielectric Laboratories Inc. C04 case size meets the EIA 0402 footprint, which is perfectly suited for High Frequency decoupling type of applications.


Milli-Caps®

Available in 0402, 0502 and 0602 footprints with capacitance values ranging from 0.3pF to 82pF. These capacitors are perfect for testing equipment, photonics, SONET, digital radios and matching filter

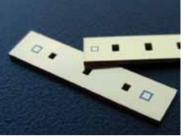
applications. A usable frequency range up to 40GHz with very low series inductance and ultra-high series resonance makes this the ideal capacitor for your broadband blocking needs.

50V UX material

The UX material space qualified to MIL-PRF-38534 Class K is now available in a 50V rating. DLI's broad range of standard architectures, including Di-Caps®, Border Caps®, Bar Caps® and Gap Caps® can utilize the new 50V rated high K dielectric. UX has

the highest dielectric constant of any of DLI's wide variety of materials. The high dielectric constant (K) allows for higher capacitance values in smaller case sizes. This means smaller components on your boards without sacrificing performance!

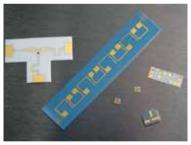
- Ultra-High Dielectric Constant K=25,000
- X7R Temperature Stability
- Highest Capacity Density SLC
- Ideal for Epoxy & Wire Bond Assembly
- Voltage Rating of 25V & 50V
- Rugged Ceramic & Thin Film Gold
- Excellent Dimensional Tolerance


Catalog Filters

Newly released Catalog Lowpass and Bandpass Filters for high frequency applications. This small, surface mount filters have temperature stable performance from 2 GHz up to 50 GHz. The filters integrate DLI's

high dielectric, temperature stable ceramic materials to offer high reliability in environmentally challenging conditions. Continue to check our website for new additions.

Cavity Filters



Ceramic cavity resonator technology can be employed in conjunction with DLI's stable, high Q ceramics to create highly selective, small, low loss band pass filters. Using a multiport implementation, a very small robust filter

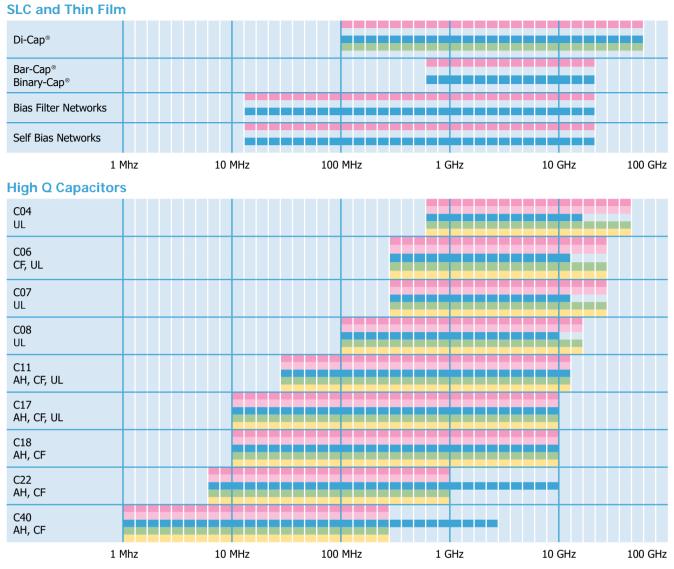
can be created. Wide reject band performance without spurious modes is possible. The small, shielded nature of the ceramic filter implementation makes it an ideal choice for integration in low noise receiver front ends with the antenna and pre-amplifier.

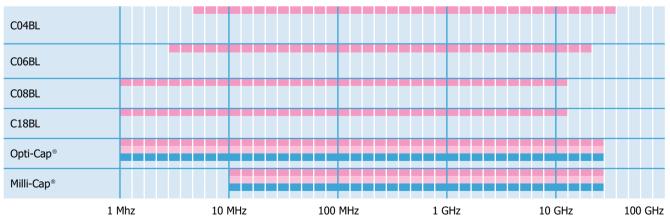
High-order band pass filters are created by cascading single cavity resonators to generate the required rejection.

Build to print

DLI offers Build to Print services designed to facilitate thin film product design, manufacturing and testing from prototype to high volume production. Our custom ceramics offer significantly

better thermal performance than the majority of the industry standard ceramics and have an added benefit of a sufficiently higher dielectric constant (K) allowing miniaturization opportunities and temperature stable performance.


Gain Equalizers


Gain Equalizers are designed as a small, low cost solution to your gain slope challenges. DLI's EW series is designed to address the issue from DC to 18 GHz in a package smaller than an 0302 capacitor. Components are designed for surface mount pick and place equipment or epoxy mount.

Simplified Frequency & Product Application Chart

Broadband and DC Blocks

DC Blocking Low Noise Amplifiers Power Amplifiers, High Power Amplifiers Oscillators Filters

SLC - Dielectric Information

Single Layer Capacitors are available with any of our proprietary dielectric materials in the **following configurations:**

Border Cap[®] Di-Cap[®] Bar Cap[®] Bi-Cap[®] Gap Cap[®] T-Cap[®]

Please consult the following pages for part number identification.

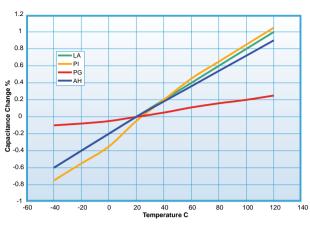
DLI Class I Dielectric Materials

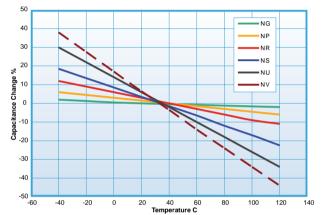
Dielectric Code	Relative ξr @ 1 MHz	Temperature Coefficient -55°C to 125°C (ppm/°C Max)	1 MHz Dissipation Factor (% Maximum)	25°C Insulation Resistance (MΩ)	125°C Insulation Resistance (MΩ)
PI	9.9	P105 ± 20	0.15	>106	>105
PG	13	P22 ± 30	0.15	>106	>105
AH	20	P90 ± 20	0.15	>106	>105
CF	24	0 ± 15	0.60	>106	>105
NA	22	N30 ± 15	0.15	>106	>105
CD	37	N20 ± 15	0.15	>106	>105
NG	43	$N220 \pm 60$	0.25	>106	>105
CG	70	0 ± 30	0.70	>106	>105
DB	72	N50 ± 30	0.15	>106	>105
NP	85	N750 ± 200	0.50	>104	>103
NR	160	N1500 ± 500	0.25	>106	>105
NS	300	N2400 ± 500	0.70	>106	>105
NU	600	N3700 ± 1000	1.50	>106	>105
NV	900	N4700 ± 1000	1.20	>106	>105

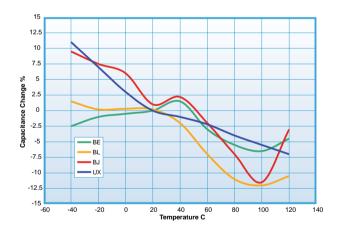
DLI Class II Dielectric Materials

Dielectric Code	Relative ξr @ 1 MHz	Temperature Coefficient-55°C to 125°C (ppm/°C Max)No Bias,No Bias,Pre VoltagePost VoltageConditioningConditioning		1 MHz Dissipation Factor (% Maximum)	25°C Insulation Resistance (MΩ)	125°C Insulation Resistance (MΩ)
BF*	445	±7.5	±10	2.5	>104	>102
BD	700	±10	±15	2.5	>104	>103
BG*	900	±10	±15	2.5	>104	>103
BC	1300	±10	±15	2.5	>104	>103
BE	1250	±10	±15	2.5	>104	>103
BL	2000	±15	±25	2.5	>105	>104
BJ	3300	±10	±15	3.0	>105	>104
BN	4500	±15	±25	3.0	>105	>104

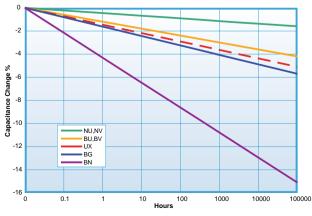
DLI Class III Dielectric Materials

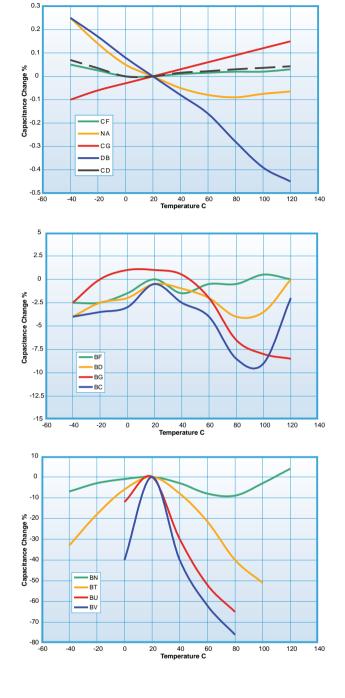

BT*	4200	+22, -56% (-55°C to 105°C)	+22, -56% (-55°C to 105°C)	3.0	>105	>102
BU	8500	+22, -82% (10°C to 85°C)	+22, -82% (10°C to 85°C)	3.0	>105	>104
BV	13,500	+22, -82% (10°C to 85°C)	+22, -82% (10°C to 85°C)	3.0	>105	>104
UX	25,000	±15%	±25%	2.5	>103	>102

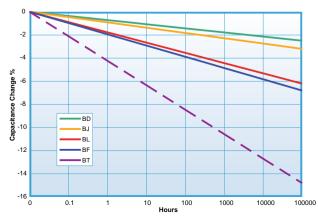

* Recommended for commercial use only. Please contact an inside sales representative for additional information.



SLC - Dielectric Information


Dielectric Temperature Characteristics





SLC - Specifications

Termination Codes

	Code	Descr (Layers in order from dieled	Capacitor Types			
	Ρ	S1 (Sputter Plated) 1. 300 Angstroms Titanium-Tungsten 2. 50µ Inches min. Nickel-Vanadium 3. 100µ Inches min. Gold	troms Titanium-Tungsten 1. 75µ Inches min. Nickel-Vanadium 2. 100µ Inches min. Gold			
	т	S 1. 300 Angstroms 2. 50µ Inches min 3. 300µ Inches	Di-Cap®, T-Cap®			
	М	1. 300 Angstroms	S5 1. 300 Angstroms Titanium-Tungsten 2. 100µ Inches min. Gold			
1-11	В	S1	AU-100	Single Border Cap		
	Е	S1	AU-100	Double Border Cap		
Single beam lead	L		Standard lead material is silver (Ag) .002" thick. Optional Gold (Au)			
Axial beam lead	А	Standard lead material is Silver (A	Standard lead material is Silver (Ag) .002" thick. Optional Gold (Au)			
	Z	Standard lead material is Tin-Copper (Di-Cap®			
Standard axial beam lead	S	Standard lead material i Optional		Di-Cap®		

Test Level Codes

Code	Description
	Industrial / Commercial Options
Y	1% AQL 2 Side Visual Screening
х	 100% 4 Side Visual Screening 1% AQL for the electrical parameters Capacitance, Dissipation Factor, Insulation Resistance, and Dielectric Withstanding Voltage
	High Reliability Options

liability Optio

- MIL-PRF-49464 Group A
- 100% Thermal Shock
- 100%, 100 +0/-4 Hours Voltage Conditioning • 100% Electrical Screening
- 100% 6 Side Visual Screening
- Bond Strength
- Die Shear Strength
- Temperature Coefficient Limits
- MIL-PRF-49464 Group B
- MIL-PRF-49464, Group A
- Immersion
- Low Voltage Humidity
- Life

А

В

D

Special agreed upon testing to customers' formal specification. Customer Drawing Required! (May include, but is not limited to, one or more of the following

- common requests.) • MIL-PRF-38534 Class H Element Evaluation.
- MIL-PRF-38534 Class K Element Evaluation.
- 10(0) Destructive Bond Pull per MIL-STD-883, Method 2011.
- 10(0) Die Shear per MIL-STD-883, Method 2019.

Consult Factory for other alternatives or assistance in specifying custom testing.

6 Side Visual Screening per MIL-STD-883, Method 2032. F

All Single Layer Capacitors are Lead Free and RoHS compliant.

Capacitance Tolerance Table

Tolerance Code	Tolerance
А	±.05pF
В	±.10pF
С	±.25pF
D	±.50pF
E	±.5%
F	±1%
G	±2%
Н	±3%
1	±4%
J	±5%
К	±10%
L	±15%
Μ	±20%
Х	GMV
V	+100%, -0%
Z	+80% ,-20%
S	Special

Environmental & Physical Testing Procedures

Parameter	MIL-STD-202					
Falameter	Method	Condition				
Thermal Shock	107	A, (modified), -55°C to +125°C.				
Immersion	104	В				
Moisture Resistance	106	-				
Resistance to Solder Heat	210	C, 260°C for 20 seconds.				
Life	108	A, 96 Hours @ +125°C.				
Barometric Pressure	105	В				
Shock, (Specified Pulse)	213	I, 100g's, 6ms.				
Vibration, High Frequency	204	G, 30g's peak, 10Hz to 2kHz.				

Parameter	MIL-STD-883				
Faianetei	Method	Condition			
Bond Strength	2011	D, 3 grams minimum with .001" dia wire			
Die Shear Strength	2019	Limit per MIL-STD-883, Figure 2019-4.			
Temperature Cycling	1010	C			
Mechanical Shock	2002	В,Ү1,			
Constant Acceleration	2001	3,000g's, Y1 direction			

SLC - Packaging

SLC Waffle Packaging

DLI offers a wide variety of standard design waffle packs in various materials depending on the application. Typical material offerings are antistatic and gel pack, which can contain up to 400 pieces depending on component dimension. Custom waffle packs are available; please consult the factory for details.

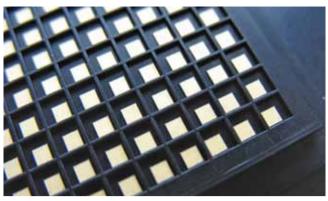
SLC Tape and Reel

DLI offers tape and reel packaging solutions for a variety of our single layer capacitor case sizes. Utilizing the latest technology and equipment to provide our customers the highest quality products, our standard SMD tape and reel packaging meets or exceeds EIA standards. Custom tape and reel packaging available; consult the factory for options.

SLC on Tape Ring

DLI offers single layer capacitors re-populated on blue membrane tape and photon ring assembly to maximize efficiency and minimize product cost. Used in high volume applications, the re-populated capacitors provide for more efficient component placement and fewer "pick and place" machine change outs. The re-populated capacitors meet GMV capacitance value, are 100% visually acceptable and can be re-populated in custom shapes and sizes on a 6 inch photon tape ring.

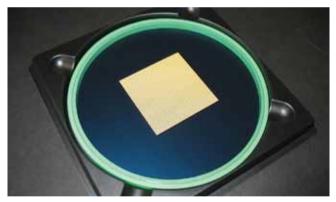
SLC "Black Dotted" on Tape Ring

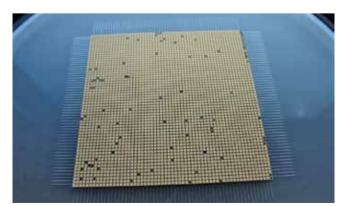

DLI offers "black dotted" capacitors on membrane tape and photon ring assembly. For high volume applications utilizing visual recognition, a less expensive alternative is the use of "black dotted" capacitors provided on saw dice membrane tape. The non- "black dotted" capacitors meet GMV capacitance value and a minimum of 75% visually acceptable product is guaranteed.

Storage

Single layer capacitors with applicable terminations will be solderable for a minimum of 1 year from date of shipment if properly stored in their original packaging. For extended periods, storage in a dry nitrogen environment is recommended. Product supplied on membrane tape and photon ring should be stored in the original container and in an environmentally controlled area where temperature and humidity are maintained. It is recommended not to store the product in direct light as this can negatively impact the adhesion properties of the tape.

Handling

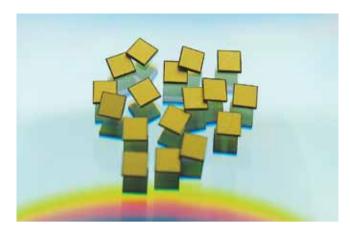

Single layer ceramic capacitors should be handled carefully during component transfer or placement, preventing damage to the gold and ceramic surfaces. The capacitors should be handled with precision stainless steel tweezers or a vacuum wand. Contacting the capacitor with bare hands should be avoided as resulting contaminants will affect the performance of the component.


SLC Waffle Packaging

SLC Tape and Reel

SLC on Tape Ring

SLC "Black Dotted" on Tape Ring


Description

SLC with recessed metallization available with border on one or both sides.

- Recessed metallization minimizes the potential for shorting during die attach
- Bordered area provides contrast for vision recognition during automated placement and wire bonding
- Thin film technology
- ESD proof

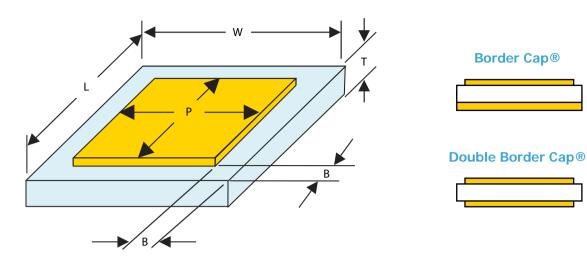
Functional Applications

- DC Blocking
- RF Bypass
- Filtering
- Tuning and Submounts

Part Number	Capacitor	10 Capacitors of each value								
Part Number	Width	Dielectric	рF	Tol.	рF	Tol.	рF	Tol.	pF	Tol.
		Class I, see codes on	0.1	В	0.6	С	1.5	С	2.7	D
D10XXKITA1EX	.010″	Page 4	0.4	В	1.0	С	2.2	D	3.3	D
DIUXXKITATEX	.010	Class II, see codes on	3.9	D	5.6	Μ	8.2	Μ	20	М
		Page 4	4.7	D	6.2	Μ	10	Μ	33	М
		Class I, see codes on Page 4	0.1	В	0.7	С	1.5	С	3.3	D
D15XXKITA1EX .015"	.015″		0.4	В	1.0	С	2.2	С	6.4	D
D20XXKITA1EX	.020″	Class II, see codes on Page 4	6.8	K	10	K	20	Μ	50	М
			8.2	K	15	K	33	Μ	100	М
			0.4	В	1.7	С	4	D	8.2	К
	.025″	Class I, see codes on Page 4	0.6	С	1.9	С	5	D	10	К
D25XXKITA1EX D30XXKITA1EX	.025	T dye H	0.9	С	2.7	С	5.6	D	20	K
	.030	Class II, see codes on Page 4	33	М	50	М	100	М	180	М

Double Border Cap® Designer Kits 160 Capacitors, 10 Each of 16 Values

DLI reserves the right to substitute values as required.


Customer may request particular cap value and material for sample kit to prove out designs.

Part Number Identification

D	10	BN	100	K	1	E	Х	
Product	Case	Material	Capacitance	Tolerance	Voltage	Termination	Test Level	Packaging
D = Border	Size	See material	(pF)	$A = \pm 0.05 pF$	2 = 25V*	P = Ni / Au	Y, X, A, B,	D = Black Dotted
Cap®	10	tables on Page 4.	R02 = 0.02 pF	$B = \pm 0.10 pF$	1 = 100V	B = Single	D and E.	E = Repopulated
	12		0R5 = 0.5 pF	$C = \pm 0.25 pF$	*For	Border	See test level	T = Tape and
	15		1R0 = 1.0 pF	$D = \pm 0.5 pF$	Capacitors with	E = Double	definitions on	Reel
	20		5R1 = 5.1 pF	$F = \pm 1\%$	UX material	Border	Page 6.	Leave blank
	25		100 = 10 pF	G = ± 2%	only	M = Au		Leave blank
	30		101 = 100 pF	$J = \pm 5\%$				for generic
	35		152 = 1500 pF	K = ± 10%				waffle pack.
	40			$L = \pm 15\%$				See packaging
	50		Refer to Capacitance	M = ± 20%				definitions on Page 7.
			range tables for	Z = +80% -20%				on rage / r
			available values.					
			Consult an inside sales rep. for					
			custom solutions.					

Border Cap®

Border Cap® Dimensions

Style	Standard Style Capacitance		L&W Length & Width		o Size	-	3 rder	T Thickness		
	Range pF	Inches (±.001)	mm (±.025)	Inches (Nom.)	mm (Nom.)	Inches	mm	Inches	mm	
D10	0.02 - 100	0.010	0.254	0.008	0.203	0.001	0.025			
D12	0.03 - 100	0.012	0.305	0.010	0.254	(+.001,0005)	(+.025,013)			
D15	0.03 - 200	0.015	0.381	0.011	0.279					
D20	0.06 - 430	0.020	0.508	0.016	0.406			0.0035 (+0, -0.008)	0.089 (+0, -0.203)	
D25	0.10 - 700	0.025	0.635	0.021	0.533		0.051 (+.005,038)			
D30	0.15 - 1000	0.030	0.762	0.026	0.660	0.002 (+.002,0015)				
D35	0.20 - 1300	0.035	0.889	0.031	0.787					
D40	0.25 - 1800	0.040	1.016	0.036	0.914					
D50	0.40 - 3000	0.050	1.270	0.046	1.168					

Ultra High K, UX Dielectric

25 Volt Single Border Cap® Cap. Ranges (pF)

2	25 Volt	Double	Border	Cap®	Cap.	Ranges	(pF)

Min Max

Min

Max

Min Max

Min

Max Min

Max

Min Max

Min Max

Min

Max

Min

Available Thicknesses 0.006" 75

91

110

130 140

170

270 320

440

540 650

800 900

1100

1200

1500

2000

2400

Case Size		Available T 0.006"	hicknesses 0.010"	Case Size
D10	Min	82	—	D10
DIO	Max	100	_	DIU
D12	Min	120	—	D12
DIZ	Max	140	_	DIZ
D15	Min	160	100	D15
015	Max	200	140	DIS
D20	Min	300	200	D20
D20	Max	370	240	D20
D25	Min	490	300	D25
DZS	Max	590	370	D25
D30	Min	710	450	D30
D30	Max	860	540	D30
D35	Min	1000	600	D35
035	Max	1200	750	D35
D40	Min	1300	800	D40
D40	Max	1600	950	D40
D50	Min	2000	1300	D50
000	Max	2400	1500	050

 Max
 2400
 1500
 Max

 UX material restricted to "M" termination only.
 Consult a DLI Application Engineer for additional values.

100 Volt Single Border Cap® Capacitance Ranges (pF)

Case	pF	DLI Class I Dielectrics													
Size	рг	PI	PG	AH	CF	NA	CD	NG	CG	DB	NP	NR	NS	NU	NV
D10	Min	0.03	0.04	0.06	0.07	0.07	0.15	0.15	0.25	0.25	0.25	0.50	0.90	1.8	2.7
DIU	Max	0.05	0.06	0.10	0.10	0.10	0.15	0.20	0.35	0.35	0.40	0.80	1.5	3.0	4.3
D12	Min	0.05	0.06	0.09	0.10	0.15	0.20	0.20	0.30	0.35	0.40	0.70	1.3	2.7	3.9
DIZ	Max	0.07	0.09	0.10	0.15	0.15	0.25	0.30	0.50	0.50	0.60	1.1	2.2	4.3	6.2
D15	Min	0.06	0.08	0.15	0.15	0.15	0.25	0.30	0.45	0.45	0.55	1.00	1.9	3.9	5.6
015	Max	0.09	0.10	0.20	0.20	0.20	0.35	0.40	0.70	0.70	0.85	1.6	3.0	5.6	8.2
D20	Min	0.15	0.15	0.25	0.25	0.25	0.45	0.50	0.80	0.80	0.95	1.8	3.6	6.8	10
D20	Max	0.15	0.20	0.35	0.40	0.45	0.70	0.80	1.3	1.3	1.6	3.0	5.6	11	16
D25	Min	0.20	0.25	0.40	0.40	0.45	0.70	0.80	1.3	1.3	1.5	3.0	5.6	11	16
DZJ	Max	0.30	0.40	0.60	0.65	0.70	1.1	1.3	2.0	2.2	2.4	4.7	9.1	18	27
D30	Min	0.30	0.35	0.55	0.60	0.65	0.95	1.2	1.8	1.9	2.2	4.3	8.2	16	24
030	Max	0.45	0.55	0.90	1.0	1.0	1.6	1.9	3.0	3.0	3.6	6.8	13	27	39
D35	Min	0.35	0.50	0.75	0.80	0.85	1.4	1.6	2.7	2.7	3.0	6.2	11	22	33
035	Max	0.60	0.80	1.2	1.3	1.5	2.2	2.7	4.3	4.3	5.1	10	18	36	56
D40	Min	0.50	0.65	1.0	1.1	1.2	1.8	2.0	3.3	3.6	4.3	7.5	15	30	43
D40	Max	0.70	0.95	1.4	1.6	1.7	2.7	3.0	5.1	5.1	6.2	11	22	43	62
D50	Min	0.8	1.0	1.5	1.7	1.8	2.7	3.3	5.1	5.6	6.2	12	22	47	68
050	Max	1.1	1.5	2.2	2.4	2.7	4.3	4.7	8.2	8.2	10	18	33	68	100

*Recommended for commercial use only. Please contact an inside sales representative for additional information.

100 Volt Double Border Cap® Capacitance Ranges (pF)

Case	ъĘ						DLI	Class I	I Dielectrics						
Size	pF	PI	PG	AH	CF	NA	CD	NG	CG	DB	NP	NR	NS	NU	NV
D10	Min	0.03	0.04	0.06	0.07	0.07	0.15	0.15	0.20	0.23	0.27	0.45	0.85	1.7	2.7
010	Max	0.04	0.06	0.09	0.10	0.10	0.15	0.15	0.30	0.34	0.41	0.70	1.3	2.7	3.9
D12	Min	0.04	0.06	0.09	0.10	0.09	0.15	0.20	0.30	0.33	0.39	0.65	1.3	2.7	3.9
DIZ	Max	0.06	0.08	0.10	0.15	0.15	0.25	0.25	0.45	0.51	0.60	1.1	2.0	3.9	6.2
D15	Min	0.06	0.07	0.15	0.15	0.15	0.20	0.25	0.40	0.48	0.56	0.85	1.6	3.3	5.1
015	Max	0.08	0.10	0.15	0.15	0.15	0.30	0.35	0.55	0.68	0.80	1.3	2.4	4.7	6.8
D20	Min	0.10	0.15	0.20	0.25	0.25	0.40	0.45	0.70	0.87	1.03	1.6	3.0	6.2	9.1
D20	Max	0.15	0.20	0.30	0.35	0.35	0.60	0.70	1.1	1.3	1.5	2.4	4.7	9.1	13
D25	Min	0.20	0.25	0.35	0.40	0.40	0.60	0.70	1.2	1.4	1.7	2.7	5.1	10	15
DZS	Max	0.25	0.35	0.50	0.65	0.60	1.0	1.1	1.9	2.1	2.5	4.3	8.2	16	24
D30	Min	0.25	0.35	0.50	0.60	0.55	0.90	1.1	1.7	2.0	2.4	3.9	7.5	15	22
030	Max	0.40	0.50	0.80	0.95	0.90	1.5	1.7	2.7	3.1	3.7	6.2	12	24	36
D35	Min	0.35	0.45	0.70	0.80	0.75	1.3	1.5	2.4	2.8	3.3	5.6	10	20	30
035	Max	0.55	0.70	1.1	1.3	1.2	2.0	2.4	3.9	4.3	5.1	9.1	16	33	51
D40	Min	0.45	0.60	0.90	1.1	1.0	1.7	1.9	3.3	3.6	4.3	7.5	15	27	43
D40	Max	0.65	0.90	1.3	1.6	1.5	2.4	2.7	4.7	5.7	6.8	11	20	39	62
D50	Min	0.70	0.95	1.4	1.7	1.6	2.7	3.0	5.1	5.7	6.8	12	22	43	68
050	Max	1.1	1.4	2.2	2.4	2.4	3.9	4.7	7.5	9.1	10	16	33	62	100

*Recommended for commercial use only. Please contact an inside sales representative for additional information.

Ultra High K, UX Dielectric

50 Volt Single Border Cap[®] Cap. Ranges (pF)

50 Volt Double Border Cap® Cap. Ranges (pF)

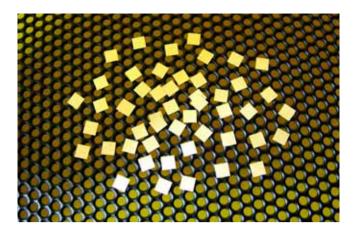
Case Size		Available Thicknesses 0.010"
D10	Min	—
DIU	Max	_
D12	Min	—
DIZ	Max	_
D15	Min	100
DIJ	Max	140
D20	Min	200
D20	Max	240
D25	Min	300
025	Max	370
D30	Min	450
030	Max	540
D35	Min	600
033	Max	750
D40	Min	800
D40	Max	1000
D50	Min	1200
050	Max	1500

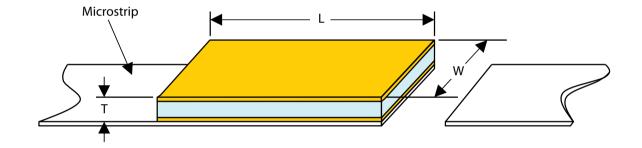
Case Size		Available Thicknesses 0.010"
D10	Min	-
DIU	Max	-
D12	Min	-
DIZ	Max	-
D15	Min	91
DIS	Max	110
D20	Min	170
D20	Max	210
D25	Min	280
D25	Max	340
D20	Min	410
D30	Max	500
D25	Min	560
D35	Max	700
D40	Min	750
D40	Max	900
DEO	Min	1200
D50	Max	1500

UX material restricted to "M" termination only. Consult a DLI Application Engineer for additional values.

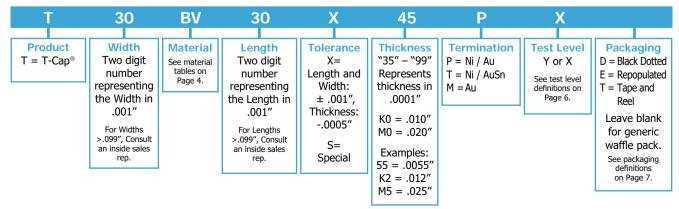
		DLI	Class II	Dielect	rics			DLI Cla	ss III Die	lectrics	pF	Case
BF*	BD	BG*	BC	BE	BL	BJ	BN	BT*	BU	BV	р	Size
1.3	2.2	2.7	3.9	3.6	6.2	10	13	13	27	39	Min	D10
2.2	3.3	4.3	6.2	6.2	10	16	22	22	43	68	Max	DIU
1.9	3.0	3.9	5.6	5.6	9.1	15	20	20	36	62	Min	D12
3.3	5.1	6.2	9.1	9.1	13	24	33	33	62	100	Max	DIZ
2.7	4.3	5.6	8.2	8.2	13	20	30	30	56	82	Min	D15
4.3	6.8	8.2	13	12	20	33	43	43	82	130	Max	DIJ
5.1	8.2	10	15	15	24	39	51	51	100	150	Min	D20
8.2	13	16	24	22	36	62	82	82	160	240	Max	020
8.2	13	16	24	24	36	62	82	82	150	240	Min	D25
13	20	27	39	36	56	100	130	130	240	390	Max	025
12	18	24	36	33	56	91	120	120	220	360	Min	D30
20	30	39	56	56	91	150	200	200	360	560	Max	050
16	27	33	47	47	75	120	160	160	300	510	Min	D35
27	43	56	75	75	120	200	270	270	510	820	Max	055
22	33	43	62	62	100	160	220	220	430	680	Min	D40
33	51	62	91	91	130	240	330	330	620	1000	Max	5 10
33	51	68	100	91	150	270	330	330	620	1000	Min	D50
51	82	100	150	130	220	390	510	510	1000	1500	Max	230

		DLI	Class II	Dielect	rics			DLI Cla	ass III Diel	ectrics	pF	Case
BF*	BD	BG*	BC	BE	BL	BJ	BN	BT*	BU	BV	рі	Size
1.3	2.0	2.7	3.6	3.6	5.6	9.1	13	13	24	39	Min	D10
2.0	3.0	3.9	5.6	5.6	9.1	15	20	20	39	62	Max	DIU
1.8	3.0	3.9	5.6	5.1	8.2	15	20	20	36	56	Min	D12
3.0	4.7	6.2	8.2	8.2	13	22	30	30	56	91	Max	DIZ
2.4	3.9	5.1	6.8	6.8	11	18	24	24	47	75	Min	D15
3.6	5.6	6.8	10	10	16	27	36	36	68	110	Max	DIJ
4.7	7.5	9.1	13	13	20	33	47	47	91	150	Min	D20
6.8	11	13	20	20	30	51	68	68	130	220	Max	D20
7.5	12	15	22	22	33	56	75	75	150	220	Min	D25
12	18	24	33	33	51	82	120	120	220	360	Max	DZJ
11	18	22	33	30	51	82	110	110	220	330	Min	D30
18	27	36	51	51	82	130	180	180	330	510	Max	030
15	24	30	43	43	68	110	150	150	300	470	Min	D35
24	39	51	68	68	110	180	240	240	470	750	Max	000
20	33	43	62	56	91	150	200	200	390	620	Min	D40
30	47	62	82	82	130	220	300	300	560	910	Max	0-10
33	51	68	91	91	150	240	330	330	620	1000	Min	D50
47	75	100	130	130	220	360	470	470	910	1500	Max	030


SLC - T-Cap®


T-Cap[®] "Transmission Line" capacitors are designed as a reliable solution in DC Blocking and RF Bypassing applications. The T-Cap[®] products utilize the same Single-Layer processing technology of the Di-Cap[®] product line, with one difference, this device offers a more constant physical size and resonance behavior where dimensional consistency is more desirable than a specified capacitance value.

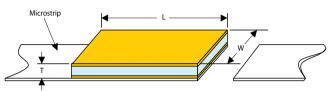
Description


Transmission Line Single Layer Capacitors

- Consistant electrical resonance performance at microwave frequencies
- Repeatable performance from lot to lot
- Thin Film technology
- **Functional Applications**
- Filtering DC Blocking RF Bypassing Tuning
- Insulation Submounts Stand-Offs

Part Number Identification

SLC - Di-Cap®

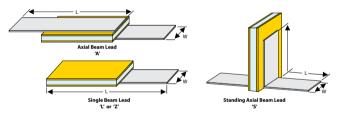

High Performance Single Layer Capacitors for RF, Microwave and Millimeter-Wave Applications.

- Gold metallization for wire bonding Rugged construction
- Custom sizes at commercial prices
- Thin film technology ESD proof

Functional Applications

• DC Blocking • RF Bypass • Filtering • Tuning

Di-Cap[®]



Dimensions Maximum thickness does not apply for capacitance values below 0.5pF. For thickness of 25 Volt product refer to table on page 14.

	W		L		٦	Г	٦	Г	Std. Capacitor
Style	Wic	Width		Length (Max)		Thickness (50 Volts)		Thickness (100 Volts)	
	Inches	mm	Inches	mm	Inches	mm	Inches	mm	pF
D10	.010 +.000003	.254 +.000076	.010	.254	$.004 \pm .001$	$.102 \pm .025$	-	-	.02 - 100
D12	.012 +.002003	.305 +.051076	.015	.381	.004 ±.001	$.102 \pm .025$	-	-	.03 - 200
D15	.015 +.000003	.381 +.000076	.020	.508	$.004 \pm .001$	$.102 \pm .025$	$.006 \pm .001$	$.152 \pm .025$.04 - 300
D20	.020 +.000003	.508 +.000076	.020	.508	.004 ±.001	$.102 \pm .025$	$.006 \pm .001$.152 ±.025	.06 - 400
D25	.025 +.000003	.635 +.000076	.030	.762	$.004 \pm .001$	$.102 \pm .025$	$.006 \pm .001$	$.152 \pm .025$.10 - 780
D30	.030 +.000003	.762 +.000076	.030	.762	$.004 \pm .001$	$.102 \pm .025$	$.006 \pm .001$.152 ±.025	.15 - 950
D35	.035 ±.005	.889 ±.127	.040	1.016	$.004 \pm .001$	$.102 \pm .025$	$.007 \pm .002$	$.178 \pm .051$.20 -1600
D50	$.050 \pm .010$	$1.270 \pm .254$.060	1.524	-	-	.007 ±.002	.178 ±.051	.30 - 3700
D70	$.070 \pm .010$	1.778 ±.254	.080	1.778	-	-	.008 ±.002	.203 ±.051	.55 - 6800
D90	$.090 \pm .010$	2.286 ±.254	.100	2.540	-	-	$.010 \pm .004$.254 ±.102	.65 -10,000

Leaded Di-Cap®

Notes: • See Di-Cap®Termination Code Table for available lead configurations. • Lead material is 0.002" pure silver, (Ag), 0.002"±.0005" thick. • Leads are attached with AuSn, 80%/20% eutectic alloy. Re-flow temperature is 280°C minimum. • Pure Gold, (Au) leads are available. Consult factory for details. • Chip dimensions per Di-Cap® dimensions table. • Custom lead dimensions are available. Consult factory for details.

Dimensions

Style	V Lead Wid	-	V Lead Wid	-	L Lead Length (Min)		
	Inches	mm	Inches	mm	Inches	mm	
D10	.0035	.0889	.007	.1778	.250	6.350	
D12	.0045	.1143	.009	.2286	.250	6.350	
D15	.0065	.1651	.013	.3302	.250	6.350	
D20	.0085	.2159	.017	.2159	.250	6.350	
D25	.011	.2794	.022	.5588	.250	6.350	
D30	.0135	.3429	.027	.6858	.250	6.350	
D35	.015	.381	.030	.762	.250	6.350	
D50	.020	.508	.040	1.016	.250	6.350	
D70	.030	.762	.060	1.524	.250	6.350	
D90	.040	1.016	.080	2.032	.250	6.350	

Part Number Identification

D	10	CF	0R1	В	5	Р	Х	
Product	Case	Material	Capacitance	Tolerance	Voltage	Termination	Test Level	Packaging
D = Di-Cap®	Size	See material	(pF)	$A = \pm 0.05 pF$	2 = 25V	P = Ni / Au	Y, X, A, B,	D = Black Dotted
	10	tables on Page 4.	R02 = 0.02pF	$B = \pm 0.10 pF$	5 = 50V	T = Ni / AuSn	D and E.	E = Repopulated
·	12		0R5 = 0.5pF	$C = \pm 0.25 pF$	1 = 100V	M = Au	See test level	T = Tape and
	15		1R0 = 1.0pF	$D = \pm 0.5 pF$		L = Single	definitions on	Reel
	20		5R1 = 5.1pF	$F = \pm 1\%$		Beam Lead	Page 6.	Leave blank
	25		100 = 10pF	G = ± 2%		A = Axial		for generic
	30		101 = 100pF	J = ± 5%		Beam Lead		waffle pack.
	35		432 = 4300pF	K = ± 10%		S = Standing		See packaging
	50			L = ± 15%		Axial Beam		definitions
	70		Refer to Capacitance	M = ± 20%		Lead		on Page 7.
	90		range tables for	Z = +80% -20%		D = Special		
			available values.			Z = Tin Copper		
			Consult an inside sales rep. for custom solutions.			Ribbon		

SLC - Di-Cap®

Ultra High K, UX* Dielectric Di-Cap®

25 Volt Capacitance Ranges (pF)

Coop Size		Available T	hicknesses
Case Size		0.006″	0.010″
D10	Min	51	_
DIU	Max	75	_
D12	Min	75	—
DIZ	Max	180	_
D15	Min	110	_
DIJ	Max	250	_
D20	Min	170	100
D20	Max	340	200
D25	Min	280	170
DZJ	Max	650	390
D30	Min	390	240
050	Max	800	470
D35	Min	620	360
000	Max	1400	850
D50	Min	1600	940
050	Max	3200	2000
D70	Min	3500	2100
570	Max	5900	3500
D90	Min	6200	3700
050	Max	10000	5500

50 Volt Capacitance Ranges (pF)

Case Size		Available Thicknesses 0.010"
D10	Min	-
DIU	Max	_
D12	Min	_
DIZ	Max	_
D15	Min	82
DIS	Max	150
D20	Min	100
D20	Max	200
D25	Min	170
DZJ	Max	390
D30	Min	240
030	Max	470
D35	Min	360
033	Max	850
D50	Min	940
D30	Max	2000
D70	Min	2100
D70	Max	3500
D90	Min	3700
090	Max	5500

*UX material restricted to "M" termination only.

50 Volt Di-Cap® Capacitance Ranges (pF)

Case	рE						DLI	Class I	Dielect	rics					
Size	pF	PI	PG	AH	CF	NA	CD	NG	CG	DB	NP	NR	NS	NU	NV
D10	Min	0.03	0.04	0.06	0.07	0.06	0.10	0.15	0.20	0.20	0.25	0.45	0.80	1.6	2.4
010	Max	0.05	0.06	0.10	0.10	0.10	0.15	0.20	0.35	0.35	0.40	0.80	1.5	3.0	4.3
D12	Min	0.04	0.06	0.08	0.10	0.09	0.15	0.20	0.30	0.30	0.35	0.65	1.2	2.4	3.6
DIZ	Max	0.10	0.10	0.20	0.25	0.20	0.35	0.45	0.75	0.75	0.90	1.7	3.0	6.2	9.1
D15	Min	0.06	0.08	0.15	0.15	0.15	0.25	0.25	0.45	0.45	0.50	1.0	1.8	3.6	5.6
DIS	Max	0.15	0.20	0.30	0.35	0.30	0.55	0.65	1.1	1.1	1.3	2.4	4.7	9.1	13
D20	Min	0.09	0.15	0.20	0.20	0.20	0.35	0.40	0.65	0.65	0.75	1.5	2.7	5.6	8.2
D20	Max	0.20	0.25	0.40	0.50	0.45	0.75	0.90	1.4	1.5	1.8	3.3	6.2	12	18
DDE	Min	0.20	0.25	0.35	0.45	0.40	0.65	0.75	1.2	1.3	1.5	2.7	5.1	11	16
D25	Max	0.40	0.50	0.80	0.95	0.90	1.5	1.7	2.7	2.7	3.3	6.2	12	24	36
D20	Min	0.25	0.30	0.45	0.55	0.50	0.85	0.95	1.6	1.6	1.9	3.6	6.8	15	20
D30	Max	0.45	0.60	0.95	1.1	1.0	1.8	2.0	3.3	3.3	3.9	7.5	13	27	43
DOF	Min	0.35	0.50	0.70	0.85	0.80	1.3	1.5	2.7	2.7	3.0	5.6	11	22	33
D35	Max	0.85	1.1	1.8	2.0	1.9	3.3	3.6	6.2	6.2	7.5	13	27	51	75

*Recommended for commercial use only. Please contact an inside sales representative for additional information.

100 Volt Di-Cap® Capacitance Ranges (pF)

Case	тГ						DLI	Class I	Dielect	rics					
Size	pF	PI	PG	AH	CF	NA	CD	NG	CG	DB	NP	NR	NS	NU	NV
D15	Min	0.04	0.06	0.08	0.1	0.09	0.15	0.20	0.30	0.30	0.35	0.65	1.2	2.4	3.6
DIS	Max	0.10	0.10	0.20	0.25	0.20	0.35	0.45	0.70	0.75	0.85	1.6	3.0	6.2	9.1
D20	Min	0.06	0.08	0.15	0.15	0.15	0.25	0.30	0.45	0.45	0.55	1.0	1.9	3.9	5.6
D20	Max	0.10	0.15	0.25	0.30	0.30	0.50	0.60	0.95	1.0	1.2	2.2	3.9	8.2	12
D25	Min	0.15	0.20	0.25	0.30	0.30	0.45	0.50	0.85	0.85	1.0	1.9	3.6	7.5	11
D25	Max	0.25	0.35	0.50	0.65	0.60	1.0	1.1	1.9	1.9	2.2	4.3	8.2	16	24
D30	Min	0.15	0.20	0.35	0.40	0.35	0.60	0.65	1.1	1.1	1.3	2.7	4.7	9.1	15
030	Max	0.30	0.40	0.65	0.75	0.70	1.2	1.4	2.2	2.2	2.7	5.1	9.1	18	27
D35	Min	0.20	0.25	0.40	0.45	0.45	0.70	0.80	1.3	1.4	1.6	3.0	5.6	12	18
035	Max	0.55	0.75	1.2	1.4	1.3	2.2	2.4	3.9	4.3	5.1	9.1	18	36	51
D50	Min	0.50	0.60	0.95	1.1	1.1	1.7	2.0	3.3	3.3	3.9	7.5	15	30	43
050	Max	1.3	1.7	2.7	3.0	3.0	4.7	5.6	9.1	9.1	11	20	39	82	120
D70	Min	0.95	1.2	1.9	2.4	2.2	3.6	4.3	6.8	6.8	8	15	30	56	91
D70	Max	2.0	2.7	3.9	4.7	4.3	7.5	8.2	13	15	16	33	62	120	180
D00	Min	1.2	1.5	2.4	3.0	2.7	4.3	5.1	8.2	8.2	10	20	36	68	110
D90	Max	3.0	3.9	6.2	7.5	6.8	12	13	22	22	27	51	91	180	270

*Recommended for commercial use only. Please contact an inside sales representative for additional information.

SLC - Di-Cap®

Di-Cap® Designer Kits 160 Capacitors, 10 Each of 16 Values

Part Number	Capacitor			10 Cap	acitors o	f each va	lue			
Part Number	Width	Dielectric	рF	Tol.	pF	Tol.	pF	Tol.	pF	Tol.
		Class I, see codes on	0.1	В	0.6	С	1.5	С	2.7	D
D10XXKITA5PX	.010″	Page 4	0.4	В	1	С	2.2	D	3.3	D
DIUXANITASPA	.010	Class II, see codes on	3.9	D	5.6	М	8.2	М	20	М
		Page 4	4.7	D	6.2	М	10	М	33	М
		Class I, see codes on	0.1	В	0.6	С	1.5	С	3.3	D
D15XXKITA5PX	.015″	Page 4	0.4	В	1.0	С	2.2	С	5.6	D
D20XXKITA5PX	.020″	Class II, see codes on	6.8	K	10	K	20	М	50	М
		Page 4	8.2	К	15	K	33	М	100	М
			0.4	В	1.5	С	3.3	D	8.2	K
	.025″	Class I, see codes on Page 4	0.6	С	2.2	С	4.76	D	10	K
D25XXKITA5PX .025" D30XXKITA5PX .030"	ruge f	1.0	С	2.7	С	5.6	D	20	K	
		Class II, see codes on Page 4	33	М	50	М	100	М	180	М

DLI reserves the right to substitute values as required. Customer may request particular cap value and material for sample kits.

		DLI	Class II	Dielect	rics			DLI Cla	ass III Die	ectrics	рE	Case
BF*	BD	BG*	BC	BE	BL	BJ	BN	BT*	BU	BV	р⊦	Size
1.2	1.8	2.4	3.6	3.3	5.6	9.1	12	12	22	36	Min	D10
2.2	3.6	4.3	6.2	6.2	10	16	22	22	43	68	Max	DIU
1.8	3.0	3.6	5.1	5.1	8.2	13	18	18	36	56	Min	D12
4.7	7.5	9.1	13	13	20	33	47	47	91	130	Max	DIZ
2.7	4.3	5.6	7.5	7.5	12	20	27	27	51	82	Min	D15
6.8	11	13	20	18	30	51	68	68	130	200	Max	DIS
4.3	6.2	8.2	12	12	18	30	43	43	75	120	Min	D20
9.1	13	18	27	24	39	68	91	91	180	270	Max	D20
8	12	16	22	22	36	56	82	82	150	240	Min	D25
18	27	36	51	51	82	130	180	180	330	510	Max	DZ5
10	16	20	30	30	47	75	100	100	200	300	Min	D30
22	33	43	62	62	91	160	220	220	390	620	Max	030
16	27	33	47	47	75	120	160	160	300	510	Min	D35
39	62	75	110	110	180	270	390	390	750	1200	Max	035

		DLI	Class II	Dielect	rics			DLI Cla	ectrics	рЕ	Case	
BF*	BD	BG*	BC	BE	BL	BJ	BN	BT*	BU	BV	pF	Size
1.8	3.0	3.6	5.6	5.1	8.2	13	18	18	36	56	Min	D15
4.3	6.8	9.1	13	13	20	33	47	47	82	130	Max	015
2.7	4.3	5.6	8	8	13	20	30	30	56	82	Min	D20
6.2	9	12	18	16	27	47	62	62	120	180	Max	D20
5.6	8	11	16	15	24	39	56	56	100	160	Min	D25
12	18	24	33	33	51	82	120	120	220	360	Max	025
6.8	11	15	20	20	33	51	68	68	130	220	Min	D30
13	22	27	43	39	62	100	130	130	270	430	Max	030
9.1	13	18	24	24	39	62	91	91	160	270	Min	D35
24	39	51	75	75	120	180	270	270	510	750	Max	035
22	33	43	62	62	100	160	220	220	390	620	Min	D50
56	91	120	160	160	270	430	560	560	1100	1800	Max	050
43	68	91	120	120	200	330	430	430	820	1300	Min	D70
91	130	180	270	240	390	680	910	910	1600	2700	Max	070
51	82	110	150	150	240	390	510	510	1000	1600	Min	D90
130	220	270	390	390	620	1000	1300	1300	2700	4300	Max	030

SLC - Bar Cap®

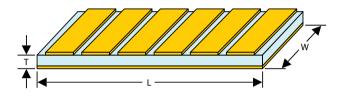
Bar Caps are specifically designed for MMIC circuits requiring multiple capacitor applications, such as Multiple Decoupling or RF Bypassing Networks. Multiple capacitor array devices have become an integral circuit component due to their High Q and low inductance.

Description

Multiple Decoupling/Blocking Capacitors in a Single Array

- Can be integrated into IC package to reduce bond wire lengths and improve performance
- Single insertion reduces complexity and costs
- Simplified assembly

Functional Applications


• RF Bypass • DC Blocking for GaAs IC's • Decoupling

Bar Cap® Dimensions

Case	Case No.	W W	/idth	L Le	ngth	Nom Pad Size		
size	Caps	Inches (± 0.003)	mm (± 0.076)	Inches (±0.005)	mm (±0.127)	Inches	mm	
	3			0.065	1.651			
E20	4	0.02	0.508	0.085	2.159	0.02	0.508	
	6			0.125	3.175			
	3			0.065	1.651			
E25	4	0.025	0.635	0.085	2.159	0.025	0.635	
	6			0.125	3.175			
	3			0.065	1.651			
E30	4	0.03	0.762	0.085	2.159	0.03	0.762	
	6			0.125	3.175			
	3			0.065	1.651			
E40	4	0.04	1.016	0.085	2.159	0.04	1.016	
	6			0.125	3.175			

Ultra High K, UX Dielectric 25 Volt Bar Cap[®] Capacaitance Ranges (pF)

Case Size	No. Caps	Each Cap (pF) T Thickness					
		0.006″	0.010″				
E20	3 4 6	340	-				
E25	3 4 6	420	270				
E30	3 4 6	500	320				
E40	3 4 6	690	430				

Class III, BU Dielectric 100 Volt Bar Cap[®] Capacaitance Ranges (pF)

Case Size	No. Caps	Each Cap (pF) T Thickness 0.007" (0.178mm)
	3	
E20	4	80
	6	
	3	
E25	4	100
	6	
	3	
E30	4	120
	6	
	3	
E40	4	150
	6	

Part Number Identification

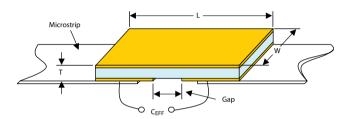
E	40	BU	151	Z	1	Р	Х	4	
Product E = Bar Capacitors	Case Size 20 25 30 40	Material See material tables on Page 4.	Capacitance (pF) 800 = 80 pF 101 = 100 pF 121 = 120 pF 151 = 150 pF Consult an inside sales rep. for custom solutions.	Tolerance Z = +80% -20%	Voltage 2 = 25V 5 = 50V	Termination P = Ni / Au M = Au	Test Level Y or X See test level definitions on Page 6.	Capacitor Quantity In mils 3 4 6 Etc.	Packaging D = Black Dotted E = Repopulated T = Tape and Reel Leave blank for generic waffle pack. See packaging definitions

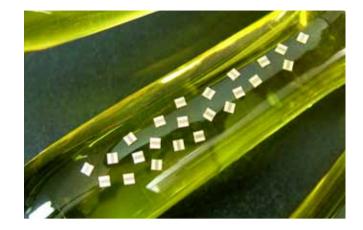
*Custom Solutions are available; however additional tooling costs may apply. Please contact the sales office for more information.

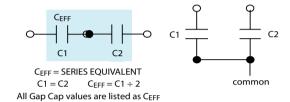
on Page 7.

SLC - Gap Cap®

Series Configured Capacitors for Microwave Applications.


Gap Caps are designed for DC Blocking and RF Bypassing. The low insertion loss and high resonant frequencies make it an ideal device for this type of application. This product's unique configuration eliminates the need for wirebonding, therefore reducing performance variations.


Description


- Consistent performance
- Coplannar waveguide
- Gap Cap configuration eliminates wirebonding

Functional Applications

- DC Blocking
- RF Bypass
- Elimination of wirebond

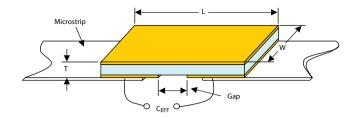
Gap Cap Designer Kits 160 Capacitors, 10 Each of 16 Values

Part Number	Capacitor			10 Cap	acitors o	f each va	lue			
Part Number	Width	Dielectric	pF	Tol.	pF	Tol.	pF	Tol.	pF	Tol.
		Class I, see codes on	0.05	А	0.2	А	0.4	А	0.6	С
G10XXKITAPX05	.010″	Page 4	0.14	А	0.3	А	0.5	В	0.8	С
GIUAAKITAPAUS	.010	Class II, see codes on	1	С	2.2	D	5.6	М	10	М
		Page 4	1.5	С	4.7	М	8.2	М	15	М
	Class I, see codes on	0.08	А	0.4	А	0.6	В	1.5	D	
G15XXKITAPX08	.015″	Page 4	0.2	А	0.5	В	1	С	2.2	D
G20XXKITAPX10	.020″	Class II, see codes on	3.3	D	5.6	М	8.2	М	15	Μ
		Page 4	4.7	М	6.8	М	10	М	20	М
		Class I, see codes on	0.4	А	0.77	В	1.5	С	3.3	D
G25XXKITAPX10 .025″	Page 4	0.5	В	1	С	2.2	D	4.7	D	
	.025	Class II, see codes on	5.6	М	8.2	М	15	М	33	Μ
		Page 4	6.8	М	10	М	20	М	51	М

DLI reserves the right to substitute values as required.

Customer may request particular cap value and material for sample kits.

Part Number Identification


G	10	BU	100	K	5	Р	Х	10	
Product G = GAP Cap [⊗]	Case Size 10 15 20 25 30 35 50	Material See material tables on Page 4.	Capacitance (pF) R01 = 0.01 pF 0R5 = 0.5 pF 1R0 = 1.0 pF 5R1 = 5.1 pF 100 = 10 pF 511 = 510 pF Refer to Capacitance	Tolerance $A = \pm 0.05pF$ $B = \pm 0.10pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $L = \pm 15\%$	Voltage 2 = 25V 5 = 50V	Termination P = Ni / Au M = Au	Test Level Y, X, A, B, D and E. See test level definitions on page 6.	Gap Width In mils 5 8 10 15	Packaging D = Black Dotted E = Repopulated T = Tape and Reel Leave blank for generic waffle pack. See packaging
			range tables for available values. Consult an inside sales rep. for custom solutions.	$M = \pm 20\%$ Z = +80% -20%					definitions on Page 7.

SLC - Gap Cap®

Ultra High K, UX Dielectric

25 Volt Single Gap Cap[®] Cap. Ranges (pF)

Case Size		Available T 0.006 "	hicknesses 0.010"
G10	Min	40	—
GIU	Max	60	—
G15	Min	90	60
GIS	Max	120	70
G20	Min	150	90
G20	Max	200	120
G25	Min	190	140
GZS	Max	250	160
G30	Min	265	180
G30	Max	300	190
G35	Min	310	200
635	Max	350	250
CEO	Min	500	380
G50	Max	800	550

25 Volt Gap Cap[®] Capacitance Ranges (pF)

Case	Std.	рĘ						DLI	Class I	Dielect	trics						
Size	Gap	pF	PI	PG	AH	CF	NA	CD	NG	CG	DB	NP	NR	NS	NU	NV	
C10	.005″	Min	0.02	0.02	0.04	0.04	0.04	0.06	0.07	0.15	0.15	0.15	0.25	0.50	0.95	1.4	
G10	.005	Max	0.03	0.05	0.08	0.09	0.08	0.10	0.15	0.25	0.25	0.30	0.60	1.2	2.4	3.6	
G15	.008″	Min	0.03	0.04	0.06	0.08	0.07	0.15	0.15	0.25	0.25	0.30	0.50	0.90	1.8	2.7	
GID	.000	Max	0.07	0.10	0.15	0.15	0.15	0.25	0.30	0.50	0.55	0.65	1.2	2.2	4.3	6.8	
G20	.010″	Min	0.04	0.05	0.08	0.10	0.09	0.15	0.20	0.30	0.30	0.35	0.65	1.2	2.4	3.6	
GZU	.010	Max	0.10	0.15	0.25	0.30	0.25	0.45	0.55	0.90	0.90	1.1	2.0	3.9	7.5	11	
G25	.020″	Min	0.05	0.07	0.10	0.15	0.15	0.20	0.20	0.35	0.35	0.40	0.75	1.4	3.0	4.3	
GZS	.020	Max	0.15	0.20	0.30	0.35	0.35	0.60	0.65	1.1	1.1	1.3	2.4	4.7	9.1	13	
G30	.020″	Min	0.06	0.08	0.15	0.15	0.15	0.25	0.30	0.45	0.45	0.55	0.95	1.8	3.6	5.6	
630	.020	Max	0.15	0.25	0.35	0.45	0.40	0.70	0.80	1.3	1.4	1.6	3.0	5.6	11	16	
G35	.020″	Min	0.07	0.09	0.15	0.20	0.15	0.30	0.30	0.50	0.50	0.60	1.1	2.2	4.3	6.2	
922	.020	Max	0.20	0.25	0.45	0.50	0.50	0.80	0.95	1.6	1.6	1.9	3.6	6.8	13	20	

50 Volt Gap Cap[®] Capacitance Ranges (pF)

Case	Std.	ъF							DLI Clas	ss I Die	electric	S					
Size	Gap	pF	LA	PI	PG	AH	CF	NA	CD	NG	CG	DB	NP	NR	NS	NU	NV
G10	.005″	Min	0.01	0.02	0.02	0.03	0.03	0.03	0.04	0.05	0.08	0.08	0.09	0.20	0.35	0.65	0.95
GIU	.005	Max	0.01	0.02	0.03	0.05	0.06	0.05	0.09	0.10	0.15	0.15	0.20	0.40	0.80	1.6	2.4
G15	.008″	Min	0.02	0.03	0.03	0.05	0.06	0.05	0.08	0.10	0.15	0.20	0.20	0.35	0.65	1.3	2.0
615	.000	Max	0.02	0.05	0.06	0.10	0.10	0.10	0.15	0.20	0.35	0.35	0.40	0.80	1.5	3.0	4.7
G20	.010″	Min	0.02	0.03	0.04	0.06	0.07	0.07	0.15	0.15	0.20	0.25	0.25	0.45	0.85	1.7	2.7
620	.010	Max	0.04	0.08	0.10	0.15	0.20	0.15	0.30	0.35	0.60	0.60	0.70	1.3	2.4	5.1	7.5
G25	.020″	Min	0.03	0.04	0.05	0.08	0.09	0.08	0.15	0.20	0.30	0.30	0.35	0.60	1.1	2.2	3.3
GZJ	.020	Max	0.09	0.15	0.20	0.30	0.35	0.35	0.55	0.65	1.1	1.1	1.3	2.4	4.7	9.1	13
G30	.020″	Min	0.03	0.05	0.07	0.10	0.15	0.15	0.20	0.20	0.35	0.35	0.40	0.75	1.4	3.0	4.3
630	.020	Max	0.10	0.15	0.25	0.35	0.45	0.40	0.70	0.80	1.3	1.3	1.6	3.0	5.6	11	16
D35	.020″	Min	0.04	0.06	0.07	0.15	0.15	0.15	0.20	0.25	0.40	0.40	0.50	0.90	1.6	3.3	5.1
035	.020	Max	0.10	0.20	0.25	0.45	0.5	0.45	0.80	0.95	1.5	1.6	1.9	3.6	6.2	13	20
G50	.020″	Min	0.04	0.07	0.09	0.15	0.20	0.20	0.30	0.30	0.50	0.50	0.60	1.2	2.2	4.3	6.2
920	.020	Max	0.20	0.35	0.50	0.75	0.90	0.85	1.4	1.6	2.7	2.7	3.3	6.2	11	22	33

*Recommended for commercial use only. Please contact an inside sales representative for additional information.

SLC - Gap Cap®

25 Volt Gap Cap® Dimensions

	(Gap (G Nom.)		V dth	l Length	- (Max)	Thicknes	r s Range*
Style	Inches	mm	Inches	mm	Inches	mm	Inches (±0.001)	mm (± 0.025)
G10	0.005	0.127	0.010 +0 -0.003	0.254 +0 -0.076	0.030	0.762	0.004	0.102
G15	0.008	0.203	0.015 +0 -0.003	0.381 +0 -0.076	0.040	1.016	0.004	0.102
G20	0.010	0.254	0.020 +0 -0.003	0.508 +0 -0.076	0.050	1.270	0.004	0.102
G25	0.020	0.508	0.025 +0 -0.003	0.635 +0 -0.076	0.060	1.524	0.004	0.102
G30	0.020	0.508	0.030 +0 -0.003	0.762 +0 -0.076	0.060	1.524	0.004	0.102
G35	0.020	0.508	0.035 ±0.005	0.889 ±0.127	0.060	1.524	0.004	0.102
G50	0.020	.0508	0.05 ±0.010	1.270 ±0.254	0.080	2.032	0.006	0.152

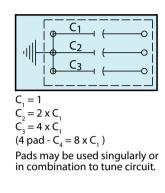
*UX thickness only available in .006" and .010".

50 Volt Gap Cap® Dimensions

		3	V	V	L	_	٦	г
Style	Gap (I	Nom.)	Wie	dth	Length	(Max)	Thicknes	ss Range
Style	Inches	mm	Inches	mm	Inches	mm	Inches (±0.001)	mm (± 0.025)
G10	0.005	0.127	0.010 +0 -0.003	0.254 +0 -0.076	0.030	0.762	0.006	0.152
G15	0.008	0.203	0.015 +0 -0.003	0.381 +0 -0.076	0.040	1.016	0.006	0.152
G20	0.010	0.254	0.020 +0 -0.003	0.508 +0 -0.076	0.050	1.270	0.006	0.152
G25	0.020	0.508	0.025 +0 -0.003	0.635 +0 -0.076	0.080	2.032	0.006	0.152
G30	0.020	0.508	0.030 +0 -0.003	0.762 +0 -0.076	0.080	2.032	0.006	0.152
G35	0.020	0.508	0.035 ±0.005	0.889 ±0.127	0.080	2.032	0.006	0.152
G50	0.020	.0508	0.05 ± 0.010	1.270 ±0.254	0.080	2.032	0.006	0.152

		DLI	Class I	Dielect	rics			DLI Cla	ss III Die	lectrics	рE	Std.	Case
BF*	BD	BG*	BC	BE	BL	BJ	BN	BT*	BU	BV	рн	Gap	Size
0.70	1.1	1.4	2.0	2.0	3.3	5.1	7.5	7.5	15	22	Min	.005″	G10
1.7	2.7	3.6	5.1	4.7	7.5	13	18	18	33	51	Max	.005	GIU
1.4	2.2	2.7	3.9	3.9	6.2	10	15	15	27	43	Min	.008″	G15
3.3	5.1	6.8	10	9.1	15	24	33	33	62	100	Max	.008	GID
1.7	2.7	3.6	5.1	5.1	8.2	13	18	18	33	51	Min	.010″	G20
5.6	9.1	11	16	16	24	43	56	56	110	160	Max	.010	620
2.2	3.3	4.3	6.2	6.2	10	16	22	22	43	68	Min	.020″	G25
6.8	11	13	20	20	30	51	68	68	130	200	Max	.020	625
2.7	4.3	5.6	8.2	7.5	12	20	27	27	51	82	Min	.020″	G30
8.2	13	16	24	24	39	62	82	82	160	240	Max	.020	630
3.3	5.1	6.2	9.1	9.1	15	24	33	33	62	100	Min	.020″	G35
10	16	20	27	27	43	75	100	100	180	300	Max	.020	632

		DLI	Class II	Dielect	rics			DLI Cla	ss III Die	lectrics	рE	Std.	Case
BF*	BD	BG*	BC	BE	BL	BJ	BN	BT*	BU	BV	pF	Gap	Size
0.50	0.75	0.95	1.4	1.4	2.2	3.6	5.1	5.1	9.1	15	Min	.005″	G10
1.1	1.8	2.4	3.3	3.3	5.1	8.2	12	12	22	36	Max	.005	010
0.95	1.5	2.0	3.0	2.7	4.3	7.5	10	10	20	30	Min	.008″	G15
2.2	3.6	4.7	6.8	6.2	10	16	22	22	43	68	Max	.000	GID
1.3	2.0	2.7	3.9	3.6	6.2	10	13	13	24	39	Min	.010″	G20
3.6	5.6	7.5	11	10	16	27	39	39	68	110	Max	.010	GZU
1.7	2.7	3.3	4.7	4.7	7.5	12	18	18	33	51	Min	.020″	G25
6.8	11	13	20	20	30	51	68	68	130	200	Max	.020	625
2.2	3.3	4.3	6.2	6.2	10	16	22	22	43	68	Min	.020″	G30
8.2	13	16	24	24	36	62	82	82	160	240	Max	.020	630
2.4	3.9	5.1	7.5	6.8	11	18	24	24	47	75	Min	.020″	G35
10	15	20	27	27	43	68	100	100	180	300	Max	.020	633
3.3	5.1	6.2	9.1	9.1	15	24	33	33	62	100	Min	.020″	G50
16	27	33	51	47	75	120	160	160	330	510	Max	.020	630

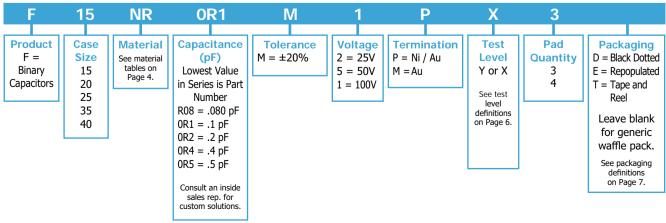

SLC - Bi-Cap®


Description

- Binary Tunable Caps for SLC Hybrids.
- Small size is compatible with microwave geometries
- Ideal for prototype circuits

Functional Applications

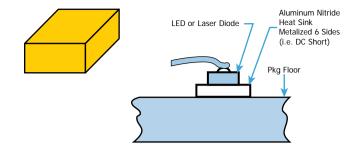
- Matching Networks
- Tank Cicuits
- Dielectric resonator tuning/coupling



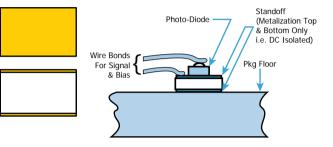
Bi-Cap® Dimensions and Part Numbers

Part Number	No. Caps	Each Cap (pF)	L & Length a Inches	W & Width	Thick Inches	r kness mm	E Bor Inches		Voltage Rating
	1	91 ×	(± .001)	(± .025)	(± .001)	(± .025)	(± .002)	(± .051)	(Volts)
F15CGR08M5PX3	3	.080, .15, .3	0.015	0.381	0.004	0.102	0.002	0.0051	50
F15NR0R1M1PX3	3	.1, .2, .4	0.015	0.381	0.006	0.152	0.002	0.0051	100
F20CG0R1M1PX3	3	.1, .2, .4	0.020	0.508	0.006	0.152	0.002	0.0051	100
F20NR0R2M1PX3	3	.2, .4, .8	0.020	0.508	0.006	0.152	0.002	0.0051	100
F25CFR08M5PX3	3	.080, .15, .3	0.025	0.635	0.004	0.102	0.002	0.0051	50
F25CG0R2M1PX3	3	.2, .4, .8	0.025	0.635	0.006	0.152	0.002	0.0051	100
F25NR0R4M1PX3	3	.4, .8, 1.6	0.025	0.635	0.006	0.152	0.002	0.0051	100
F35CF0R1M1PX3	3	.1, .2, .4	0.035	0.889	0.006	0.152	0.002	0.0051	100
F35CG0R4M1PX3	3	.1, .2, .4	0.035	0.889	0.006	0.152	0.002	0.0051	100
F40NR0R5M1PX4	4	.5, 1, 2, 4	0.040	1.016	0.0075	0.191	0.002	0.0051	100

*Custom Solutions are available; however additional tooling costs may apply. Please contact an inside sales representative for more information.


Part Number Identification

SLC - Heatsinks, Standoffs & Submounts


Heatsinks

- Heatsinks are fully metallized on all sides and are used to dissipate and absorb heat
- Heatsinks allow for high thermal conductivity and are electrically conductive (DC short)
- Typically used with LED's or laser diodes

Standoffs

- A Standoff is much like a Heatsink however it is typically metallized on only the top and bottom surfaces
- Each device is custom tailored to the customer's specifications and is typically used with LED's or Photo Diodes (works as a photo detector, light is allowed in through fibers)

Submounts

- Submounts are ceramic LED package bases which minimize thermal resistance between LED junctions and adjacent components
- By reducing junction temperatures, an LED will produce increased efficiency, brightness, color and reliability
- Each device is custom tailored to the customer's specifications

Material Specifications

Material Code	Relative ξr* @ 5 GHz	TCC†Loss ppm/°C	Coefficient of Tangent* % Max	Thermal Thermal Expansion ppm/°K	Conductivity W/m-°K
AG	8.85 ± 0.35 (@ 1MHz)	Aluminum Nitride	0.10	4.6	140-180
PI	9.9 ± 0.15 (@ 1MHz)	Alumina 99.6%	0.01	6.5 - 7.5	27

*Unless otherwise specified K dielectric measurement at approximately 5 GHz. †For the temperature range -55 to 125°C. **Material only provided metalized.

Surface Finish

Code	Roughness R _a	Material Process
Х	>50 µ in.	As-Fired
Y	20 µ in.	Machined
Z	<5 µ in.	Polished
S	Special	Drawing required

Metallization

Code	Description
М	300 Angstroms TiW, 100 μ in. min. Au
Р	75 μ in. min. Nickel, 100 μ in. min. Au
E	Metallized and etched per Customer drawing
Т	300 Angstroms min. TiW, 50 µ in. min. NiV, 300 µ in. min. Au-Sn
D	SPECIAL, DLI Design per Customer Requirements

MLC - Dielectric Material & Case Sizes

AH	DLI Series	Case Size Footprint in. (mm)	Cap Value Range (pF)	Cap (pF)	150 MHz	Typical ESR 500 MHz	1 GHz	Series Resonance (MHz)	Working Voltage (Max)
		055 055		1	0.067	0.08	0.136	9200	
	C11AH	.055 x .055 (1.40 x 1.40)	0.1 to 100	00 10 0.044 0.071		0.071	0.104	3000	250
		(1.40 x 1.40)		100	0.032	0.055	0.086	1000	
		110 110		1	0.059	0.063	0.114	9064	
	C17AH	.110 x .110 (2.79 x 2.79)	0.1 to 1000	10	0.039	0.06	0.085	3100	1000
		(2.75 × 2.75)		1000	0.024	0.05	0.074	1290	
TCC (ppm/°C)	C18AH	110 110		10	0.059	0.094	0.138	3100	
(-55° to		.110 x .110 (2.79 x 2.79)	0.1 to 1000	100	0.028	0.069	0.109	1290	1000
+125°C)				1000	0.023	0.063	-	400	
Porcelain				10	0.074	0.207	0.249	2480	
(P90)	C22AH	.220 x .250	1 to 2700	100	0.048	0.116	0.19	1000	2500
$+90 \pm 20$	CZZAN	(5.84 x 6.35)	1 to 2700	1000	0.028	0.14	-	320	2500
				2700	0.027	-	-	214	
					10MHz	30MHz	100MHz		
				15	0.066	0.033	0.027	2100	
	C40AH	.380 x .380	1 to 5100	100	0.018	0.026	0.052	680	7200
	CHUAH	(9.65 x 9.65)	1 to 5100	1000	0.009	0.017	0.033	210	7200
				5100	0.008	0.016	0.033	95	

CF	DLI Series	Case Size Footprint in. (mm)	Cap Value Range (pF)	Cap (pF)	150 MHz	Typical ESR 500 MHz	1 GHz	Series Resonance (MHz)	Working Voltage max
		062 020		1	0.182	0.276	0.428	10300	
	C06CF	.063 x .030 (1.60 x 0.80)	0.1 to 47	10	0.095	0.159	0.243	3200	250
				47	0.081	0.127	0.173	1400	
		.055 x .055		1	0.073	0.089	0.146	9900	
	C11CF	(1.40 x 1.40)	0.1 to 100	10	0.049	0.075	0.107	3100	250
		, , ,		100	0.040	0.073	0.111	970	
				1	0.073	0.082	0.124	9060	1000
TCC (ppm/°C)	C17CF	.110 x .110	0.1 to 1000	10	0.065	0.098	0.136	3100	
		(2.79 x 2.79)	011 to 1000	100	0.041	0.070	0.102	1300	1000
(-55° to				1000	0.034	0.073	-	400	
+125°C)	C18CF	.110 x .110		1	0.068	0.086	0.158	9060	1000
Porcelain		(2.79 x 2.79)	0.1 to 1000	10	0.058	0.087	0.118	3100	
(NP0)				1000	0.041	0.068	-	1000	
0 ±15				10	0.072	0.113	0.164	2480	
	C22CF	.220 x .250	1 to 2700	100	0.047	0.079	0.119	1000	2500
	CLLC.	(5.84 x 6.35)	1 10 27 00	1000	0.036	0.067	-	320	2500
				2700	0.035	-	-	214	
					10MHz	30MHz	100MHz		
				10	0.121	0.054	0.037	2100	
	C40CF	.380 x .380	1 to 5100	100	0.044	0.038	0.045	680	7200
	0.000	(9.65 x 9.65)	1 10 0100	1000	0.032	0.036	0.038	210	, 200
				5100	0.011	0.016	0.040	95	

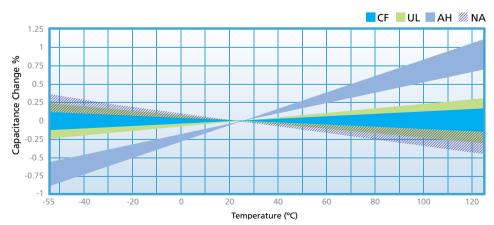
NA	DLI Series	Case Size Footprint in. (mm)	Cap Value Range (pF)	Cap (pF)	150 MHz	Typical ESR 500 MHz	1 GHz	Series Resonance (MHz)	Working Voltage max	
		.055 x .055 (1.40 x 1.40)		1	0.091	0.166	0.235	8796		
TCC (ppm/°C)	C11NA		0.1 to 100	10	0.064	0.117	0.166	2994	250	
(-55° to				100	0.046	0.083	0.117	1019		
+125°C) Ceramic				1	0.047	0.086	0.121	10360		
(NPO)	C17NA	.110 x .110	0.4.1	10	0.033	0.061	0.085	3238	1000	
(NPO) N30 ±15	C17NA	(2.79 x 2.79)	0.1 to 1000	100	0.024	0.043	0.060	1012	1000	
					1000	0.017	0.030	0.043	316	

MLC - Dielectric Material & Case Sizes

UL	DLI Series	Case Size Footprint in. (mm)	Cap Value Range (pF)	Cap (pF)	150 MHz	Typical ESR 500 MHz	1 GHz	Series Resonance (MHz)	Working Voltage max	
				1	0.081	0.095	0.148	9820		
	C04UL	.040 x .020 (1.0 x 0.5)	0.1 to 10	5	0.038	0.057	0.088	3930	200	
		(1.0 × 0.5)		10	0.036	0.058	0.087	2650		
		000 020		5 0.052 0.072 0.107		0.107	1750			
	C06UL	.060 x .030 (1.60 x 0.80)	0.1 to 47	15	0.028	0.041	0.064	1010	250	
		(1.00 × 0.00)		47	0.023	0.043	0.070	570		
TCC (ppm/°C)	C07UL	110 × 070		5.6	0.053	0.086	0.129	5000		
(-55° to		.110 x .070 (2.79 x 1.72)	0.1 to 100	10	0.029	0.041	0.066	3960	250	
+125°C)				30	0.017	0.023	0.036	2540		
Ceramic		.080 x .050		100	0.051	0.078	0.126	6000		
(NP0)	C08UL	(2.0 x 1.27)	0.1 to 100	9.5	0.041	0.060	0.094	4620	250	
0 ±30		(2.0 × 1.27)		11	0.041	0.064	0.103	4340		
				100	0.066	0.084	0.125	7530		
	C11UL	.055 x .055 (1.40 x 1.40)	0.1 to 100	10	0.037	0.057	0.086	3800	250	
		(1.10 × 1.10)		100	0.022	0.042	0.081	1430		
		110 110		10	0.040	0.056	0.082	2940		
	C17UL	.110 x .110 (2.79 x 2.79) 0	0.1 to 1000	100	0.021	0.035	0.057	910	1000	
				470	0.016	0.029	-	420		

DLI MLC Dielectric Materials

Dielectric Code	Temperature Coefficient	Dissipation Factor @ 1 MHz	Insulation Res	sistance (MΩ)
Dielectric code	-55°C to +125°C	(% Maximum)	@ +25°C	@ +125°C
AH	P90 ± 20 ppm/°C	0.05		
CF	0 ± 15 ppm/°C	0.05	See Notes below	See Notes below
UL	0 ± 30 ppm/°C	0.05		
BL*	± 15%	2.50	>104	>103
NA	N30 ± 15 ppm/°C	0.05	>106	>105


*Broadband Blocks only.

Notes: Insulation Resistance (Per MIL-PRF-55681 & MIL-PRF-55681/4)

High Frequency Capacitors (C11, C17 & C18) @ +25°C: $10^6 M\Omega$ (0.1pF to 470pF) / $10^5 M\Omega$ (510pF to 1000pF) @ +125°C: $10^5 M\Omega$ (0.1pF to 470pF) / $10^4 M\Omega$ (510pF to 1000pF) All other Case sizes (C04, C06, C07, C08, C22, C40) @ +25°C: $10^5 M\Omega$ @ +125°C: $10^4 M\Omega$

ESR and Resonance data is of typical performance and can vary from lot to lot. Consult factory for additional case size data.

Temperature Coefficient of Capacitance

MLC – Application Notes

Chip Selection

Multilayer capacitors (MLC) are categorized by dielectric performance with temperature, or "temperature coefficient", as these devices vary in behavior over temperature. The choice of component is thus largely determined by the temperature stability required of the device, i.e. type of dielectric, and the size necessary for a given capacitance and voltage rating. The following items are pertinent to chip selection:

Dielectric Type

CF: Ultra stable Class I dielectric exceeds EIA COG requirements with negligible dependence of electrical properties on temperature, voltage, frequency and time, used in circuitry requiring very stable performance.

AH: EIA Class I dielectric with a dielectric constant that increases with temperature (90ppm/°C). Useful for temperature compensation where other board components may be losing capacitance with temperature.

NA: EIA Class I dielectric with a negative TCC. Useful in situations where other board components are gaining capacitance with temperature.

UL: EIA Stable Class I dielectric, with extremely low ESR. Useful in any application where heat generation or signal loss are concerns.

BL: EIA Stable Class II dielectric (X7R), with predictable change in properties with temperature, voltage, frequency and time. Used as blocking, de-coupling, bypassing and frequency discriminating elements. This dielectric is ferroelectric, and provides higher capacitance than Class I.

Capacitor Size

Size selection is based primarily on capacitance value, voltage rating, and resonance frequency. Smaller units are generally less expensive; 0603 is the most economical size. Because mass affects the thermal shock behavior of chips, size selection must consider the soldering method used to attach the chip to the board. C18 and smaller can be wave, vapor phase or reflow soldered. Larger units require reflow soldering.

Termination Material

Nickel barrier termination, with exceptional solder leach resistance is recommended for all applications involving solder. DLI offers two versions of the nickel barrier termination. The "Z" termination is a nickel barrier with 100% matte tin for a lead free capacitor. The "U" termination is a nickel barrier with 90/10 tin/lead for military applications. Non-magnetic versions of these termination finishes are also available.

Solder Leaching

DLI's termination finishes are designed to withstand RoHS attachment methods. During soldering, time above 230°C should be minimized to reduce thinning of the barrier layer and subsequent bond failure. DLI offers enhanced magnetic and nonmagnetic termination finishes for applications requiring extended soldering time or repeated reflow cycles. Please consult your Sales Representative when ordering.

Packaging

Units are available in bulk, reeled or in waffle pack.

Attachment Methods

Bonding of capacitors to substrates can be categorized into two methods, those involving solder, which are prevalent, and those using other materials, such as epoxies and thermo-compression or ultrasonic bonding with wire. Please see DLI application note "Recommended Solder Attachment Techniques for MLC Chip and Pre-Thinned Capacitors" located on our website: www.dilabs.com.

Soldering

Soldering methods commonly used in the industry and recommended are Reflow Soldering, Wave Soldering, and to a lesser extent, Vapor Phase Soldering. All these methods involve thermal cycling of the components and therefore the rate of heating and cooling must be controlled to preclude thermal shocking of the devices. In general, rates which do not exceed 120°C per minute and a temperature spike of 100°C maximum for any soldering process on sizes C18 and smaller is advisable. Other precautions include post soldering handling, primarily avoidance of rapid cooling with contact with heat sinks, such as conveyors or cleaning solutions.

Large chips are more prone to thermal shock as their greater bulk will result in sharper thermal gradients within the device during thermal cycling. Units larger than C18 experience excessive stress if processed through the fast cycles typical of solder wave or vapor phase operations. Solder reflow is most applicable to the larger chips as the rates of heating and cooling can be slowed within safe limits. In general, rates that do not exceed 60°C per minute and a temperature spike of 50°C maximum for any soldering process on sizes larger than C18 is advisable.

Attachment using a soldering iron requires extra care, particularly with large components, as thermal gradients are not easily controlled and may cause cracking of the chip. Precautions include preheating of the assembly to within 100°C of the solder flow temperature, the use of a fine tip iron which does not exceed 30 watts, and limitation of contact of the iron to the circuit pad areas only.

Bonding

Hybrid assembly using conductive epoxy or wire bonding requires the use of silver palladium or gold terminations. Nickel barrier termination is not practical in these applications, as intermetallics will form between the dissimilar metals. The ESR will increase over time and may eventually break contact when exposed to temperature cycling.

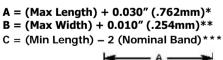
Cleaning

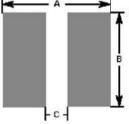
Chip capacitors can withstand common agents such as water, alcohol and degreaser solvents used for cleaning boards. Ascertain that no flux residues are left on the chip surfaces as these diminish electrical performance.

DLI Shelf Life / Storage

Capacitors are solderable for a maximum of one year from the date of shipment if properly stored in the original packaging. Dry nitrogen storage is preferable for longer periods.

MLC – Application Notes


Board Design Considerations


The amount of solder applied to the chip capacitor will influence the reliability of the device. Excessive solder can create thermal and tensile stresses on the component which could lead to fracturing of the chip or the solder joint itself. Insufficient or uneven solder application can result in weak bonds, rotation of the device off line or lifting of one terminal off the pad (tombstoning). The volume of solder is process and board pad size dependent. WAVE SOLDERING exposes the devices to a large solder volume, hence the pad size area must be restricted to accept an amount of solder which is not detrimental to the chip size utilized. Typically the pad width is 66% of the component width, and the length is .030" (.760 mm) longer than the termination band on the chip. An 0805 chip which is .050" wide and has a .020" termination band therefore requires a pad .033" wide by .050" in length. Opposing pads should be identical in size to preclude uneven solder fillets and mismatched surface tension forces which can misalign the device. It is preferred that the pad layout results in alignment of the long axis of the chips at right angles to the solder wave, to promote

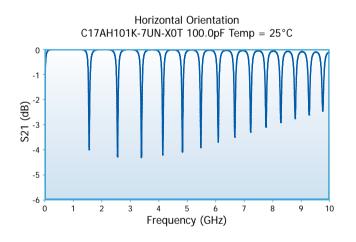
even wetting of all terminals. Orientation of components in line with the board travel direction may require dual waves with solder turbulence to preclude cold solder joints on the trailing terminals of the devices, as these are blocked from full exposure to the solder by the body of the capacitor. Restrictions in chip alignment do not apply to SOLDER REFLOW or VAPOR PHASE processes, where the solder volume is controlled by the solder paste deposition on the circuit pads There are practical limitations on capacitor sizes that prohibit reliable direct mounting of chip capacitors larger than 2225 to a substrate. Without mechanical restriction, thermally induced stresses are released once the capacitor attains a steady state condition, at any given temperature. Capacitors bonded to substrates, however, will retain some stress, due primarily to the mismatch of expansion of the component to the substrate; the residual stress on the chip is also influenced by the ductility and hence the ability of the bonding medium to relieve the stress. Unfortunately, the thermal expansions of chip capacitors differ significantly from those of substrate materials.

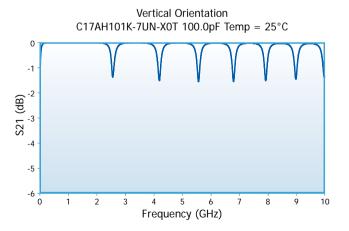
Recommended Printed Wire Board Land Patterns

Printed Wire Board land pattern design for chip components is critical to ensure a reliable solder fillet, and to reduce nuisance type manufacturing problems such as component swimming and tombstoning. The land pattern suggested can be used for reflow and wave solder operations as noted. Land patterns constructed with these dimensions will yield optimized solder fillet formation and thus reduce the possibility of early failure.¹

* Add 0.030" for Wave Solder operations.

*** Replace "Max Width" with "Max Thickness" for vertical mounting. *** "C" to be no less than 0.02", change "A" to (Max Length) + 0.020". For CO4 "C" to be no less than 0.01".


 Frances Classon, James Root, Martin Marietta Orlando Aerospace, "Electronics Packaging and Interconnection Handbook".


Temperature Precautions

The rate of heating and cooling must be controlled to preclude thermal cracking of ceramic capacitors. Soldering temperatures should not exceed 200°C per minute, temperature variation must not exceed 100°C maximum for any solder operation. Avoid forced cooling or contact with heat sinks, such as conveyor belts, metal tables or cleaning solutions, before the chips reach ambient temperatures.

MLC Orientation - Horizontal and Vertical Mounting

The orientation of the MLC relative to the ground plane affects the devices' impedance. When the internal electrodes are parallel to the ground plane (Horizontal mounting) the impedance of the MLC resembles a folded transmission line driven from one end. The below graph shows the modeled insertion loss and parallel resonances of C17AH101K-7UN-X0T with horizontal mounting. When the internal electrodes are perpendicular to the ground plane (Vertical mounting, bottom graph) the MLC impedance resembles a folded transmission line driven from the center reducing resonance effects. C11,17 are available with vertical or horizontal orientation in tape and reel packaging. Modeling can be done in CapCad. HP/EEs of series 4 contains models for C11 and C17 in the element libraries under Dielectric Laboratories MLC.

MLC – General Information

Case Size Definitions

				Wi	dth			Len	gth		Thick	1ess ⁽¹⁾	Gap		Band	Min ⁽²⁾	Band	Max ⁽²⁾
Case Size	Case Code	Termination	Inc	hes	m	m	Inc	hes	m	m	(Ma	ax)	(Betv Ban		(Pla	ted)	(Pla	ted)
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Inches	mm	Inches	mm	Inches	mm	Inches	mm
04BL	0402	U,S	.014	.026	.362	.667	.034	.049	.869	1.245	.025	.640	.008	.193	.004	.097	.017	.427
04UL	0402	S,Z	.014	.026	.362	.667	.034	.049	.869	1.245	.025	.640	.008	.193	.004	.097	.017	.427
06BL	0603	U,S,Z	.023	.038	.579	.960	.051	.069	1.303	1.760	.032	.800	.010	.241	.007	.169	.027	.680
06CF	0603	U,S,Z,E,P,W,H,V,R	.023	.038	.579	.960	.051	.069	1.303	1.760	.032	.800	.010	.241	.007	.169	.027	.680
06UL	0603	U,S,Z	.022	.041	.555	1.040	.051	.076	1.303	1.920	.033	.827	.014	.362	.007	.169	.027	.680
07UL	0711	S,Z	.090	.131	2.292	3.334	.052	.089	1.327	2.267	.105	2.667	.019	.483	.008	.193	.047	1.200
08BL	0805	U,S,Z	.040	.061	1.013	1.547	.065	.097	1.641	2.454	.054	1.360	.010	.241	.014	.362	.041	1.040
08UL	0805	U,S,Z	.040	.061	1.013	1.547	.065	.097	1.641	2.454	.054	1.360	.010	.241	.014	.362	.041	1.040
11	0505	U,S,Z,E,P,Q,Y,M,W,H,V,R	.038	.074	.965	1.867	.043	.074	1.086	1.867	.053	1.334	.014	.362	.008	.193	.029	.733
11	0505	Т	.038	.074	.965	1.867	.043	.084	1.086	2.134	.053	1.334	.014	.362	NA	NA	NA	NA
17	1111	U,S,Z,E,P,Q,Y,M,W,H,V,R	.090	.131	2.292	3.334	.095	.137	2.413	3.467	.105	2.667	.038	.965	.008	.193	.047	1.200
17	1111	Т	.090	.137	2.292	3.467	.095	.152	2.413	3.867	.105	2.667	.038	.965	NA	NA	NA	NA
18BL	1111	U,S,Z	.108	.133	2.743	3.378	.100	.120	2.540	3.048	.100	2.540	.040	1.016	.010	2.540	.040	1.016
18	1111	U,Z,E,W,H,V	.090	.142	2.292	3.600	.095	.152	2.413	3.867	.105	2.667	.043	1.086	.008	.193	.047	1.200
22	2222	U,S,Z,E,P,Q,Y,M,W,H,V,R	.223	.278	5.671	7.068	.200	.252	5.067	6.401	.137	3.467	.124	3.137	NA	NA	NA	NA
40	3838	U,S,Z,E,P,Q,Y,M,W,H,V,R	.352	.410	6.928	10.401	.352	.415	8.928	10.535	.137	3.467	.276	6.998	NA	NA	NA	NA

(1) Dimensions listed include the termination, not just ceramic.

(2) Band widths are from corner to corner of part.

*C22-Bands must not have more than an .017 difference from the measured band on one end to the band on the other.

Recommended Pad Spacing Dimensions (inches)

Case Cine	Internal	R	eflow Solderir	g	V	Vave Soldering	q	
Case Size	Electrode	Α	В	С	Α	В	C	
C04	Horizontal	0.076	0.036	0.010	0.106	0.036	0.020	
C04	Vertical	1	Not Recommended	ł	Ν	Not Recommended	B C 0.036 0.020 Recommended 0.020 Recommended 0.020 0.141 0.020 Recommended 0.020 0.141 0.020 Recommended 0.020 0.064 0.020 0.063 0.020 0.147 0.040 0.115 0.070 0.115 0.070 0.115 0.070	
C06	Horizontal	0.106	0.051	0.020	0.136	0.051	0.020	
00	Vertical	1	Not Recommended	t	1	Not Recommended	t	
C07	Horizontal	0.119	0.141	0.020	0.149	0.141	0.020	
CUV	Vertical	1	Not Recommended	ł	1	Not Recommended	ł	
C08	Horizontal	0.127	0.071	0.020	0.157	0.071	0.020	
00	Vertical	0.127	0.064	0.020	0.157	0.064	0.020	
C11	Horizontal	0.114	0.084	0.020	0.144	0.084	0.020	
CII	Vertical	0.114	0.063	0.020	0.144	0.063	0.020	
C17	Horizontal	0.182	0.147	0.040	0.212	0.147	0.040	
CI	Vertical	0.182	0.115	0.040	0.212	0.115	0.040	
C18	Horizontal	0.182	0.152	0.070	0.212	0.152	0.070	
C10	Vertical	0.182	0.115	0.070	0.212	0.115	0.070	
C22	Horizontal	0.282	0.288	0.110	0.312	0.288	0.110	
022	Vertical	1	Not Recommended	t	1	Not Recommended	t	
C40	Horizontal	0.445	0.420	0.290	0.475	0.420	0.290	
C40	Vertical	1	Not Recommended	t	٦	Not Recommended	ł	

MLC - General Information

Termination Systems

Code	Termination System	Application	Code	Termination System	Application
т	Ag Termination Ni Barrier Layer Heavy SnPb Plated Solder	High Reliability ApplicationsHand Soldering	Y	Polymer Termination Ni Barrier Layer Sn/Pb Plated Solder	 Resistant to Cracking High Reliability Applications High Volume & Hand Solder Assembly
U	Ag Termination Ni Barrier Layer SnPb Plated Solder	 High Reliability Applications High Volume & Hand Solder Assembly 	M RoHS	Polymer Termination Cu Barrier Layer	 Resistant to Cracking Non-Magnetic Application High Volume & Hand Solder
S	Ag Termination Ni Barrier Layer	 Specialty Solder, Epoxy Applications 	Rons	Sn Plated Solder	Assembly
RoHS	Gold Flash	Standard for 0402	W	Ag Termination	Non-Magnetic Application
Z	Ag Termination	High Volume & Hand Solder	RoHS	Cu Barrier Layer Sn Plated Solder	High Volume
RoHS	Ni Barrier Layer Sn Plated Solder	Assembly	Н	Ag Termination	Non-Magnetic Applications
Е	Ag Termination	High Volume & Hand Solder	RoHS	Enhanced Cu Barrier Sn Plated Solder	High Vol. & Hand Solder AssemblyUltra Leach Resistant
RoHS	Enhanced Ni Barrier Sn Plated Solder	Assembly • Ultra Leach Resistant		Ag Termination	Non-Magnetic Applications
P RoHS	AgPd Termination	Non-Magnetic Applications	V	Cu Barrier Layer SnPb Plated Solder	 High Reliability Applications High Volume & Hand Solder Assembly
Q RoHS	Polymer Termination Ni Barrier Layer Sn Plated Solder	 Resistant to Cracking High Volume & Hand Solder Assembly 	R	Ag Termination Cu Barrier Layer Heavy SnPb Plated Solder	Non-Magnetic ApplicationsHigh Reliability ApplicationsHand Soldering

Lead Termination Codes Leads are attached with high melting point solder (HMP) at 296°C.

Axial Ribbon	Radial Ribbon	Center Ribbon	Axial Wire Lead	Radial Wire Lead
Code A	Code B	Code C	Code E	Code F
				, CE

Packaging Configurations

Case Style	Size L x W	7" Reel, 8	mm Tape	7" Reel, 16mm Tape	13" Reel, 16mm Tape	2" x 2" Waffle	
Style	LXVV	Horizontal Orientation	Vertical Orientation		zontal Itation	Pack	
C04	0.040" x 0.020"	5000					
C06	0.060" x 0.030"	4000				108	
C07	0.110″ x 0.070″	2000					
C08	0.080" x 0.050"	5000	3100			108	
C11	0.055" x 0.055"	3500	3100			108	
C17	0.110" x 0.110"	2350	750			49	
C18	0.110" x 0.110"	2350	750			49	1
C22	0.220" x 0.245"	500					r
C40	0.380" x 0.380"	250		250	1300		(

Test Level Codes

Test code	Inspection Description - see individual part pages for additional detail
Y	100% IR, 1% AQL visual, 1% AQL Electrical (DWV, Cap., DF)
Х	100% IR, 1 % visual, 1% AQL Electrical (DWV, Cap., DF)
А	Group A testing per MIL – PRF – 55681
С	Group C testing per MIL – PRF – 55681
D	Customer Defined

Typically a minimum 500 piece order for tape and reel packaging.

Standard Packaging: Bulk in plastic bags.

Consult factory for custom packaging solutions.

MLC - Standard P/N System

С	17	CF	62	20	J-	7	U	J	N-	Χ	0	Т	
MLC Capacito	Case Size	Material System	Capacita	ance Code	Tolerance Level	Voltage Code	Termina Code		eading Code	Test Level	Marking Code	Packaging	
Cupucity		System			Level	couc	couc				couc		
Case	Size 17	Mate	erial		CF	Сара	citan	се	620) Tole	erance	J	
Case	Dimensions	Mate	erial Ch	naracteri	istics	First tv			nt figures ir	n Cod	Code Value		
04	0.040" x 0.020"	A	H P9	P90 High-Q digits capacitance							± 0.	05pF	
	0.060" x 0.030"	C		PO High-Q	-	Third c		lditiona zeros	al number	В	± 0.		
	0.110" x 0.070"	U		tra Low E				zeros epreser	ate a	С		25pF	
	0.080" x 0.050"	В		Blocking		R		cimal		D	± 0.	•	
	0.055" x 0.055"		A N3	80 High-Q		_	67	0 = 62	-	F	± 19		
	0.110" x 0.110"					Examp		2 = 15		G	± 29		
	0.110" x 0.110"									J	± 59		
	0.220" x 0.250"									K	± 10		
40	0.380" x 0.380"									M	± 20		
		_							U	Х	GMV		
		Term	inatio	า					U	5	SPE		
	_	Code	Termina	ation Sys	stem						F A, B, C,		
Volta	ige /	Т	Aa Termii	nation, Ni	Barrier Laye	er, Heavy S	SnPb Plat	ted Solo	der	>10p	F F, G, J, k	К, М	
Code	Value		-		, Barrier Laye	•							
5	50V		-	•	, Barrier Laye	•			RoHS	Lea	ding	N	
1	100V				, Barrier Laye			r	RoHS	Lou	0		
8	150V		-		, hanced Ni E				RoHS	Cod	e Lead		
6	200V		AgPd Ter			·	RoH			A		Ribbon	
9	250V	Q	-		n, Ni Barrie	r Layer, Sr	Plated S	Solder	RoHS	В		l Ribbon	
3	300V	Ŷ			n, Ni Barrie				er	C		r Ribbon	
4	500V	M**	•		n, Cu Barrie	• •			RoHS		Specia	•	
7	1000V	W**	•		Barrier Lay				RoHS	D	Custo Define		
A	1500V		-	•		•			RoHS	Е	Axial		
G	2000V		-			•	Barrier, Sn Plated Solder RoH er, SnPb Plated Solder				Radia		
B	2500V	R**	Ag Termi	nation, Cu	Barrier Lay	er, Heavy	SnPb Pla	ted Sol	der	F	NONE		
D	3600V		-		. Any specia						E: Consul		
F	5000V	** Nonn				-					esentativ		
H	7200V											nt leaded	
S	SPECIAL									devie	•		
-													
Test	Level	>		Laser	Mark		С		Packa	aging		Т	
Code	Testing			Code	Laser Ma	arking			Code	Packag	ing		
Х	Commercial or	Industrial		0	No markii	ing T			Т	Tape & I	Reel – Ho	orizontal	
Y	Reduced Visua	I		1*	Single-sid	gle-side marked V Tape & Reel – V				Reel – Ve	rtical		
А	MIL-PRF-55681	L Group A		2*	Double-si	de marke	d		W	Waffle P	ack		
С	MIL-PRF-55681	L Group C		3*	Large sing	gle-side n	narked		В	Bulk			
D	Customer Spec	ified		4*	Large dou	puble-side marked P Plastic Box					ох		

5*

9

Vertical edge marked

Customer Specified

*Reduces DWV Rating.

- R Tube (Rail)
 - S Customer Specified

MLC - AH Series: P90 Porcelain Capacitors

Description

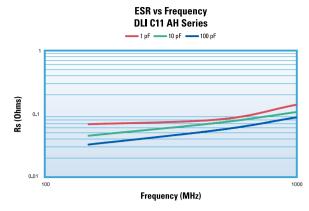
- High Q Porcelain Capacitors SMD Compatibility
- Positive TC "P90"
 Low ESR, High Q
- Capacitance range 0.1 5100 pF
- Operating Range -55° to +125°C High Voltage
- High Self-resonance Low Noise Established Reliability

Functional Applications

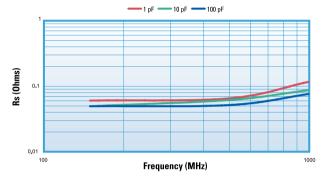
- Impedance Matching Power Handling DC Blocking
- Bypass Coupling Tuning and Feedback
- Amplifier Matching Networks
 VCO Frequency Stabilization
- Filtering, Diplexers and Antenna Matching
- High RF Power Circuits Oscillators Timing Circuits
- Filters RF Power Amplifiers and Delay Lines

Dielectric characteristics

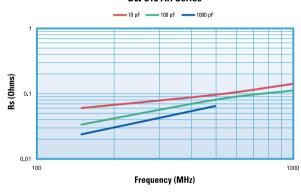
Dielectric Material (Coc	le)	P90 (AH)		
Temperature Coefficien	$+90 \pm 20$			
Dissipation Factor (% (0.05			
Dielectric	Voltage Rating (Volts)	Refer to table		
Withstanding Voltage	DWV (Volts)	250% of rated		
Insulation	@ +25°C	10 ⁶ MΩ min		
Resistance (MΩ Minimum)	@ +125°C	10⁵ MΩ min		
Ageing		None		
Piezoelectric Effects	None			
Dielectric Absorption		None		

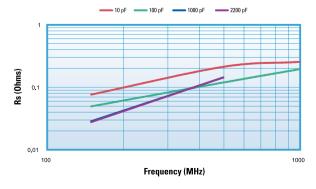

Note: Refer to table on page 28 for ordering information.

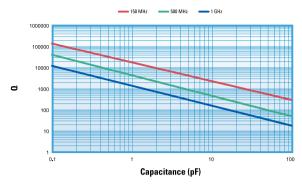
Capacitance and Voltage Table

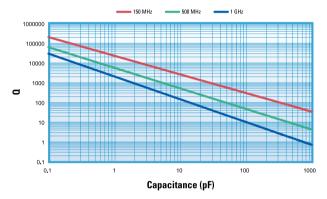

			<u>-</u>	Case Size				
Сар	Сар	C11	C17	C18	C22	C40		
Code	(PF)	0505	1111	1111	2225	3838		
0R1 0R2	0.1 0.2	b b						
0R2 0R3	0.2	250V Code 9						
0R4	0.4	ode 9	IN C	2KV (2.5KA	7.260		
0R5	0.5		Code	C a a		7.2KV Code H		
0R6 0R7	0.6 0.7			ရ	—	т ж		
0R8	0.8							
0R9	0.9							
1R0 1R1	1.0 1.1							
1R3	1.3							
1R4	1.4							
1R5 1R6	1.5 1.6							
1R7	1.7							
1R8 1R9	1.8 1.9							
2R0	2.0							
2R1	2.1							
2R2 2R4	2.2 2.4							
2R4 2R7	2.4							
3R0	3.0							
3R3	3.3							
3R6 3R9	3.6 3.9							
4R3	4.3							
4R7	4.7							
5R1 5R6	5.1 5.6							
6R2	6.2							
6R8 7R5	6.8 7.5							
7R5 8R2	7.5 8.2							
9R1	9.1							
100 110	10 11							
120	12							
130	13							
150 160	15 16							
180	16							
200	20							
220	22							
240 270	24 27							
300	30							
330	33							
360 390	36 39	8						
430	43	200V Code 6						
470	47	de 6						
510 560	51 56							
620	62							
680	68							
750 820	75 82							
910	91							
101	100							
111 121	110 120		5000	W		3.6K		
131	130			Code				
151	150		Code 4	2		Code D		
161 181	160 180					Ĭ		
201	200							
221	220		N	N				
241 271	240 270		Q 0	9				
301	300		200V Code 6	200V Code 6				
331	330				SN			
361 391	360 390							
431	430				Þ			
471	470					2.5KV Code		
511 561	510 560		100	100	IKV	Code		
621	620		<		KV Code	œ		
681	680		Code 1	50	2			
751 821	750 820		Code 1 50V Code 5	e 1		IKV		
911	910		de 5	Code 1 50V Code 5		1KV Code 7		
102	1000		U			7		
122 152	1200 1500							
182	1800				V OO			
222	2200				88			
272 332	2700 3300				SOOV Code 4 300V Code 3	50		
332	3900				ode 3	500V Code 4		
472	4700				~	de 4		
512	5100							
Reel	QTY onto!	3500	2350	2350	500	250		
Horiz	und							

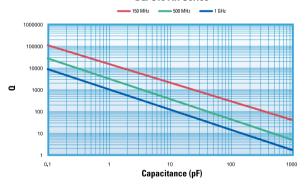
Special capacitance values available upon request.


MLC - AH Series: P90 Porcelain Capacitors


ESR vs Frequency DLI C17 AH Series

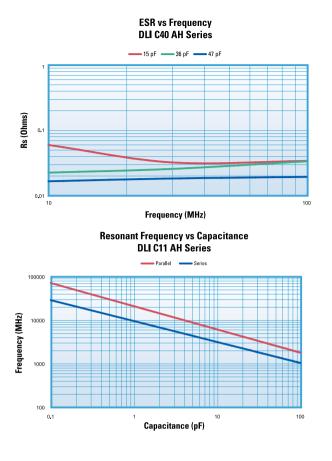


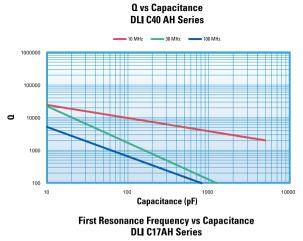

ESR vs Frequency DLI C22 AH Series

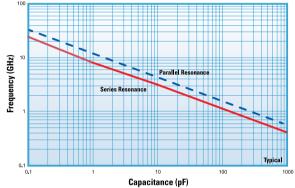

Q vs Capacitance DLI C11 AH Series

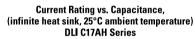
Q vs Capacitance DLI C17 AH Series

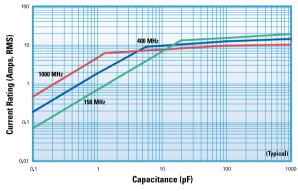
Q vs Capacitance DLI C18 AH Series

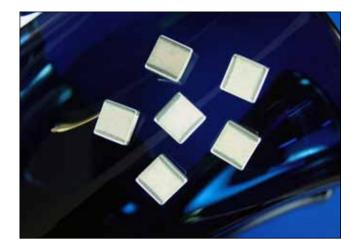

Q vs Capacitance DLI C22 AH Series




This information represents typical device performance.




MLC - AH Series: P90 Porcelain Capacitors


This information represents typical device performance.

Part Number See Page 28 for complete part number system.

С	17	AH		520	J-	-	7	U	Д	-	Х		0	Т
MLC Capaci		Material System	Ca	Capacitance Code		ce	Voltage Code	Termination Code	Leading Code		Test Level		Marking Code	Packaging
Termi	erminations Lead Types* Test Level - All Case Sizes					se Sizes	Lase	r Mark	ing	Pa	ckaging			
C11	T, U, S, Z, E, P, Q, Y,	, M, W, H, V, R	C11	1 A, B, D X S		Star	ndard		C11 0, 1, 2, 5		5	C1	1 T, V, V	/, B, P, S
C17	T, U, S, Z, E, P, Q, Y,	, M, W, H, V, R	C17	A, B, C, D, E, F	Y	Red	luced Vis	ual	C17	0, 1, 2,	3, 4, 5	C1	7 T, V, V	/, B, P, S
C18	U, Z, E, Y, W, H		C18	A, B, C, D, E, F	А	MIL	-PRF-556	581 Group A	C18	0, 1, 2,	5	C1	8 T, V, V	/, B, P, S
C22	U, S, Z, E, P, Q, Y, M	, W, H, V, R	C22	A, B, C, D, E, F	С	C MIL-PRF-55681 Group		581 Group C	C22	0, 1		C2	2 Т, В, Р	, S
C40	T, U, S, Z, E, P, Q, Y,	, M, W, H, V, R	C40	A, B, C, D, E, F	D Customer Specified		C40	0, 1		C4	0 Т, В, Р	, S, R		
	*Special leading requirements available.													

MLC - CF Series - Ultrastable Porcelain Capacitors

Description

- High Q Porcelain Capacitors SMD Compatibility
- Ultra Temperature Stable Low ESR, High Q
- Capacitance range 0.1 5100 pF
- Operating Range -55° to +125°C High Voltage
- High Self-resonance Low Noise Established Reliability

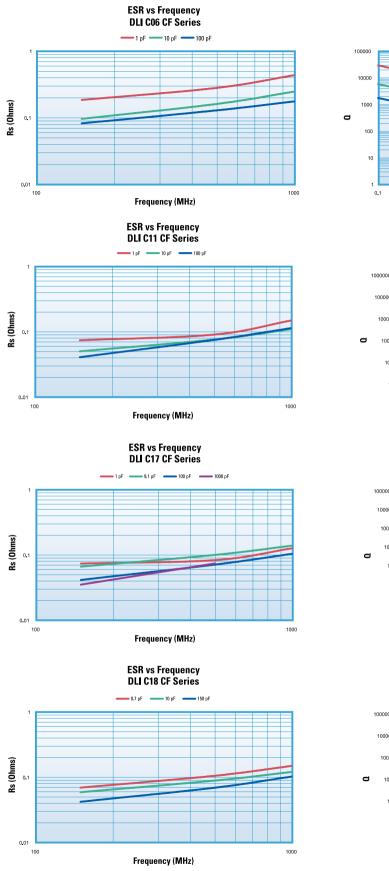
Functional Applications

- Impedance Matching Power Handling DC Blocking
- Bypass Coupling Tuning and Feedback
- Amplifier Matching Networks VCO Frequency Stabilization
- Filtering, Diplexers and Antenna Matching
- High RF Power Circuits Oscillators Timing Circuits
- Filters RF Power Amplifiers and Delay Lines

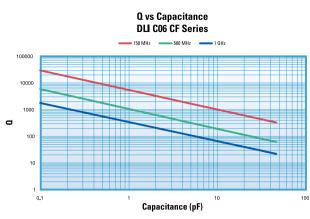
Dielectric characteristics

Dielectric Material (Co	COG/NP0 (CF)		
Temperature Coefficier	0 ± 15		
Dissipation Factor (%	0.05		
Dielectric Withstanding Voltage	Voltage Rating (Volts)	Refer to table	
	DWV (Volts)	250% of rated	
Insulation	@ +25°C	$10^6 \text{ M}\Omega \text{ min}$	
Resistance (MΩ Minimum)	@ +125°C	10⁵ MΩ min	
Ageing	None		
Piezoelectric Effects		None	
Dielectric Absorption		None	

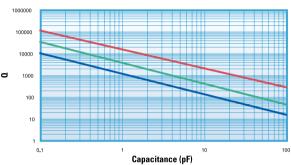
Note: Refer to table on page 28 for ordering information.


Capacitance and Voltage Table

Cap Code	Cap (PF)	C06 0603	C11 0505	Case C17 1111	Size C18 1111	C22 2225	C40 3838
0R1	0.1	250V Code 9	250V Code 9				
0R2 0R3	0.2 0.3	×Ω	D V C	0			
0R4	0.4	de	de	N N	Ž	5	2
0R4 0R5	0.4 0.5	S	<u>ی</u>	IKV Code	8	<pre>Sector</pre>	V C
0R6	0.6			e 7	ရှိ	de	7.2KV Code H
0R7 0R8	0.7					~	Ŧ
0R8	0.8						
0R9 1R0	0.9 1.0						
1R0	1.0						
1R1 1R3	1.1 1.3						
1R3 1R4	1.4						
1R5	1.5						
1R6	1.6						
1R7	1.7						
1R8	1.8						
1R9 2R0 2R1	1.9 2.0						
2R0 2R1	2.0						
2R2	2.2						
2R4	2.4						
2R7	2.7						
3R0	3.0						
3R3	3.3						
3R6 3R9	3.6 3.9						
3R9 4R3	3.9 4.3						
4R7	4.7						
5R1	5.1						
5R6	5.6						
6R2	6.2						
6R8 7R5	6.8						
/R5	7.5						
8R2 9R1	8.2 9.1						
100	9.1 10						
110	11						
120 130 150 160	12						
130	13						
150	15						
160	16						
180	18						
200	20						
220 240	22 24						
240	24						
300	30						
300 330	33						
360	36						
390	39		ĕ				
430	43		200V Code 6				
470	47 51		6				
510	51						
560 620	62						
680	68						
750	75						
820	82						
910	91 100						
101	100						
111	110			500	TR.		3.6KV
121 131	120 130						
151	150			Code 4	ode 7		Code D
161	160			4			Ö
181	180						
201	200						
221	220			N	N		
241	240			200V Code 6	200V Code 6		
271	270			Code	ode		
301 331	300 330			ő	o	<u>.</u>	
361	360					8	
391	390					<mark>8</mark>	
431	430					>	N
471	470						2.5KV Code
511	510			ē	Ę	R	S
561	560			ş	2	KV Cod	100 B
621	620					de	
681 751	680 750			Code 1 50V Code 5	Code 1 50V Code 5		
821	820			S <mark>™</mark>	8 -		I KV Code
911	910			e S	б 57		<u>S</u>
102	1000						7
122	1200						
152	1500					500V Code 4 300V Code 3	
182	1800						
222	2200						
272	2700					40	50
332 392	3300 3900					ode	V O
	4700					ω	500V Code 4
	5100						
512							
512 Reel		4000	3500	2350	2350	500	250

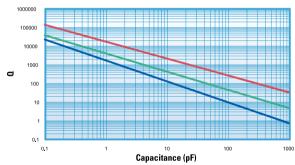

Special capacitance values available upon request.

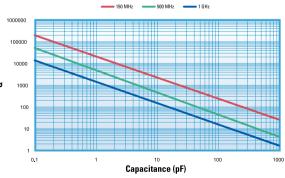
MLC - CF Series - Ultrastable Porcelain Capacitors



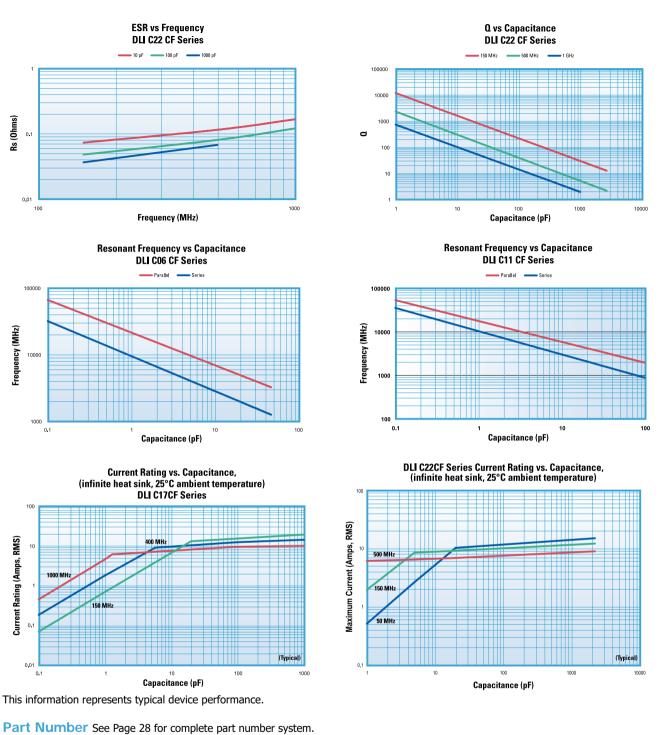
The information above represents typical device performance.

Q vs Capacitance DLI C11 CF Series


500 MHz _____ 1 GHz


150 MHz

Q vs Capacitance DLI C17 CF Series


50 MHz ______ 500 MHz ______ 1 GHz

MLC - CF Series: Ultrastable Porcelain Capacitors

17	CF	- (620	J-		7	U	Ν	N-		(0	Т
. Case Size			Capacitance Code Tolerance Level		Voltage Code	Termination Code	n Leadir	Leading Code		_evel	Marking Code	Packaging	
itions		Lead	Types	Test	Level	- All Cas	e Sizes	Laser Marking			Pac	Packaging	
J, S, Z, E, P, Q, Y, V	/, H, V, R	C11	A, B, D	Х	X Standard		C06	0, 1, 2,	5	C)6 Т, W	', B, S	
T, U, S, Z, E, P, Q, Y	, W, H, V, R	C17	A, B, C, D, E, F	Y	Y Reduced Visual		C11	0 C1		C11	/17 T, V	W, B, P, S	
J, Q, Y, V, W, H, Z		C18	A, B, C, D, E, F	А	A MIL-PRF-55681 Group A		C17	0, 1, 2,	5	C	18 T, V	W, B, P, S	
J, S, Z, E, P, Q, Y, W	/, H, V, R	C22	A, B, C, D, E, F	С	C MIL-PRF-55681 Group C		C18	0, 1		C	22 Т, В	P, S	
T, U, S, P, Q, Y, W, I	H, V, R	C40	A, B, C, D, E, F	D	D Customer Specified			C22/40	0, 1		C	40 Т, В	P, S, R
	tions J, S, Z, E, P, Q, Y, W T, U, S, Z, E, P, Q, Y J, Q, Y, V, W, H, Z J, S, Z, E, P, Q, Y, W	System Itions J, S, Z, E, P, Q, Y, W, H, V, R T, U, S, Z, E, P, Q, Y, W, H, V, R	System stions Lead J, S, Z, E, P, Q, Y, W, H, V, R C11 T, U, S, Z, E, P, Q, Y, W, H, V, R C17 J, Q, Y, V, W, H, Z C18 J, S, Z, E, P, Q, Y, W, H, V, R C22	System tions Lead Types J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F	System L stions Lead Types Test J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C	System Level Itions Lead Types Test Level J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduct J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PF J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PF	System Level Code Attions Lead Types Test Level All Cas J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduced Visual J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PRF-55681 J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681	Case Size Material System Capacitance Code Tolerance Level Voltage Code Termination Code tions Lead Types Test Level - All Case Sizes J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduced Visual J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PRF-55681 Group A J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681 Group A	Case Size Material System Capacitance Code Tolerance Level Voltage Code Termination Code Leading tions Lead Types Test Level - All Case Sizes Laser N J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard C06 T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduced Visual C11 J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PRF-55681 Group A C17 J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681 Group C C18	Case Size Material System Capacitance Code Tolerance Level Voltage Code Termination Code Leading Code tions Lead Types Test Level - All Case Sizes Laser Marking J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard C06 0, 1, 2, T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduced Visual C11 0 J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PRF-55681 Group A C17 0, 1, 2, J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681 Group A C17 0, 1, 2,	Case Size Material System Capacitance Code Tolerance Level Voltage Code Termination Code Leading Code Test I tions Lead Types Test Level - All Case Sizes Laser Marking Test I J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard C06 0, 1, 2, 5 T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduced Visual C11 0 J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PRF-55681 Group A C17 0, 1, 2, 5 J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681 Group C C18 0, 1	Case Size Material System Capacitance Code Tolerance Level Voltage Code Termination Leading Code Test Level tions Lead Types Test Level - All Case Sizes Laser Marking Pace J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard C06 0, 1, 2, 5 C0 T, U, S, Z, E, P, Q, Y, W, H, V, R C17 A, B, C, D, E, F Y Reduced Visual C11 0 C11 J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F A MIL-PRF-55681 Group A C17 0, 1, 2, 5 C12 J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681 Group A C17 0, 1, 2, 5 C13	Case Size Material System Capacitance Code Tolerance Level Voltage Code Termination Code Leading Code Test Level Marking Code tions Lead Types Test Level - All Case Sizes Laser Marking Packaging J, S, Z, E, P, Q, Y, W, H, V, R C11 A, B, D X Standard C06 0, 1, 2, 5 C06 T, W J, Q, Y, V, W, H, Z C18 A, B, C, D, E, F Y Reduced Visual C11 0 C11/17 T, V, J, S, Z, E, P, Q, Y, W, H, V, R C18 A, B, C, D, E, F A MIL-PRF-55681 Group A C17 0, 1, 2, 5 C18 T, V, J, S, Z, E, P, Q, Y, W, H, V, R C22 A, B, C, D, E, F C MIL-PRF-55681 Group A C17 0, 1, 2, 5 C18 T, V, J, S, Z, E, P, Q, Y, W, H, V, R

34 | Phone: +1.315.655.8710 | www.dilabs.com

MLC - NA Series: N30 Porcelain Capacitors

Description

- Porcelain Capacitors SMD Compatibility
- N30 ±15 ppm/°C Low ESR, High Q
- Capacitance Range 0.1 1000 pF
- Operating Range -55° to +125°C High Voltage
- High Self-resonance Low Noise Established Reliability

Functional Applications

- Impedance Matching DC Blocking Bypass Coupling
- Tuning & Feedback Amplifier Matching Networks
- VCO Frequency Stabilization
- Filtering, Diplexers & Antenna Matching
- High RF Power Circuits Oscillators Timing Circuits
- Filters RF Power Amplifiers & Delay Lines
- Power Handling

Dielectric Characteristics

Dielectric Material Code		NA
Temperature Coefficient (ppm/°C)		-30 ±15
Dissipation Factor (% @) 1MHz Maximum)	0.05
	Voltage Rating (Volts)	See Page 28
Dielectric Withstanding Voltage	DWV (Volts)	250% of WVDC for 5 sec unless specified in table
Insulation	@ +25°C	10 ⁶
Resistance (MΩ Minimum)	@ +125°C	105
Aging	None	
Piezoelectric Effects		None
Dielectric Absorption		None

Part Number See Page 52 for complete part number system.

Terminations		Lase	er Marking	3
C04	S	C04		0
C06/07/08/11/17	U, S, Z	C06		0, 1, 2
		C07		0, 1,
Lead Types		C08/	11/17	0, 1, 2
C04/06/07/08	N			
C11	A, B, D	Test	Laval A	
C17	A, B, C, D, E, F	Test		II Case Sizes
		Х	Standard	
Packaging		Υ	Reduced \	/isual
C04/06	T, W, B, P, S	А	MIL-PRF-5	55681 Group A
C07	W, B, P, S	С	MIL-PRF-5	55681 Group C

D Customer Specified

T, V, W, B, P, S

Capacitance and Voltage Table

		noo ana ronago ra	
Сар	Сар	Case C11	Size C17
Code		0505	1111
0R1	0.1		
0R1 0R2	0.1	15	
0R3	0.3	< R	
0R4	0.4	150V Code 8	1KV Code
0R5	0.5		
0R6 0R7	0.6 0.7		~
0R8	0.7		
0R9	0.9		
1R0	1.0		
1R1	1.1		
1R3 1R4	1.3 1.4		
1R5	1.5		
1R6	1.6		
1R7	1.7		
1R8 1R9	1.8 1.9		
2R0	2.0		
2R1	2.1		
2R2 2R4	2.2 2.4		
2R4 2R7	2.4		
3R0	3.0		
3R3	3.3		
3R6	3.6		
3R9 4R3	3.9 4.3		
4R7	4.7		
5R1	5.1		
5R6	5.6		
6R2 6R8	6.2 6.8		
7R5	7.5		
8R2	8.2		
9R1	9.1		
100 110	10 11		
120	12		
130	13		
150	15		
160 180	16 18		
200	20		
220	22		
240	24		
270	27		
300 330	30 33		
360	36		
390	39		
430	43		
470 510	47 51		
560	56		
620	62		
680	68		
750 820	75 82		
910	91		
101	100		
111	110	-	500
121	120		0
131	130 150		bo e 4
161	160		
181	180		
201 221	200 220		
241	240		200V Code 6
271	270		Q
301	300		6 6
331	330		
361 391	360 390		
431	430		
471	470		
511	510		z z
561 621	560 620		
681	680		
751	750		
821	820		50V Code 5
911 102	910 1000		
122	1200		
152	1500		
182	1800		
222 272	2200 2700		
	3300		
392	3900		
472	4700		
512 Bool	5100		
Reel Horiz	QTY	3500	2350
HUITZ	ondi		

Special capacitance values available upon request.

C08/11/17

MLC - UL Series: Ultra Low ESR Ceramic Capacitors

Description

- Ceramic Capacitors SMD Compatibility Stable TC NP0
- Low ESR, High Q Capacitance range 0.2 2200 pF
- Operating Range -55° to +125°C High Voltage
 Low Noise EIA 0603 & 0805 Case Size

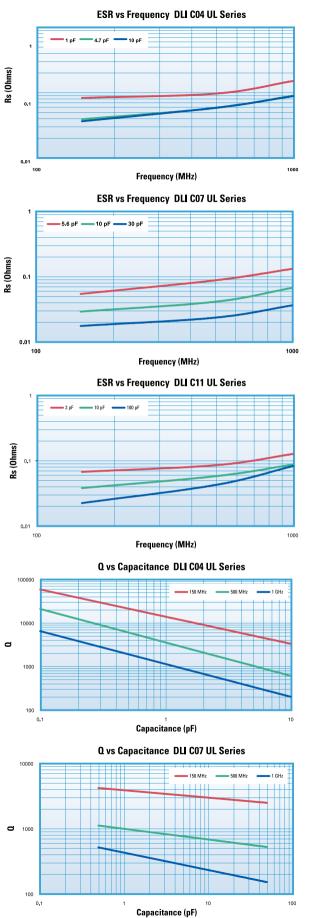
Functional Applications

- DC Blocking Bypass Coupling Tuning & Feedback
- Amplifier Matching Networks VCO Frequency Stabilization
- Filtering, Diplexers & Antenna Matching
- High RF Power Circuits Oscillators Timing Circuits
- Filters
 Broadcast Power Amps
- RF Power Amplifiers & Delay Lines

Dielectric Characteristics

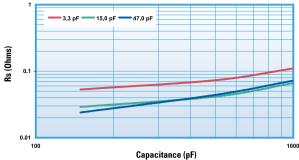
Dielectric Material Code		UL
Temperature Coefficier	it (ppm/°C)	0 ± 30
Dissipation Factor (%	@ 1MHz Maximum)	0.05
Dielectric Voltage Rating (Volt		Refer to table
Withstanding Voltage	DWV (Volts)	250% of rated
Insulation	@ +25°C	**
Resistance (MΩ Minimum)	@ +125°C	**
Aging	None	
Piezoelectric Effects	None	
Dielectric Absorption	None	

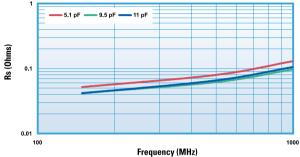
** Refer to table and statement provided on Page 28.

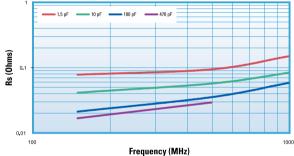

Capacitance and Voltage Table

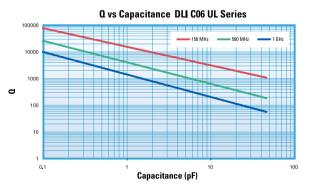
				-	0:		
Сар	Сар	C04	C06	Case C07	CO8	C11	C17
Code	(PF)	0402	0603	0711	0805	0505	1111
OR1				0/11	0805		
0R2	0.1	200V Code 6	250V Code 9			1KV Code 7 200V Code 6	1KV Code 7 500V Code 4 200V Code 6 100V Code 1 50V Code 5
0R3	0.2	N N	N Q			KV Code 7	1KV Code 7 500V Code 200V Code 100V Code 50V Code 5
0R1 0R2 0R3 0R4 0R5 0R6	0.2 0.3 0.4 0.5 0.6 0.7	de e	de	500V Code 4 250V Code 9	250V Code 9 150V Code 8	de 6	e 5
0R5	0.5	01		88	6 6		
0R6	0.6			e e 4	e e 9		
0R7 0R8 0R9 1R0	0.7						
0R9	0.9						
1R0	0.9 1.0						
1R1	1.1						
1R3	1.1 1.3 1.4 1.5 1.6 1.7						
1R4 1P5	1.4						
1R5	1.6						
1R7	1.7						
1R8	1.8 1.9						
1R1 1R3 1R4 1R5 1R6 1R7 1R8 1R9 2R0 2R1	1.9						
2RU 2R1	2.0 2.1						
2R2	2.2						
2R4	2.4						
2R7 3R0	2.4 2.7 3.0						
3R0	3.0						
3R3 3R6	3.3 3.6 3.9 4.3						
3R9	3.9						
4R3 4R7	4.3						
4R7	4./						
5R1 5R6	5.1						
602	5.6 6.2						
6R8	6.8						
7R5	7.5						
8R2	8.2						
6R2 6R8 7R5 8R2 9R1 100	7.5 8.2 9.1 10						
110	10						
110 120 130 150 160	11 12						
130	13						
150	15						
160	16						
180	18 20						
200 220 240	22						
240	24						
270 300 330 360	27						
300	30						
330	33 36						
390	39						
430	43						
470 510	47						
510	51						
560 620	56 62						
680	68						
750 820 910	75 82						
820	82						
910	91						
101 111	100 110						
121	120						
151	150						
181	180						
221	220						
271 331	270 330						
391	390						
471	470						
511	510						
561	560						
621	620						
681 821	680 820						
911	910						
102	1000						J
Reel		5000	4000	2350	5000	3500	2350
Horiz	ontal					2.500	

Special capacitance values available upon request.

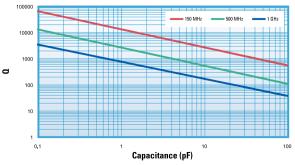

MLC - UL Series: Ultra Low ESR Ceramic Capacitors


The information above represents typical device performance.

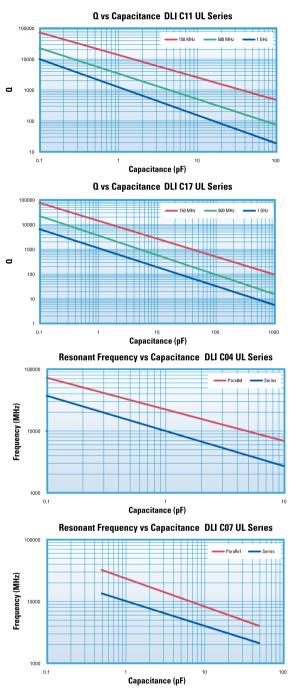




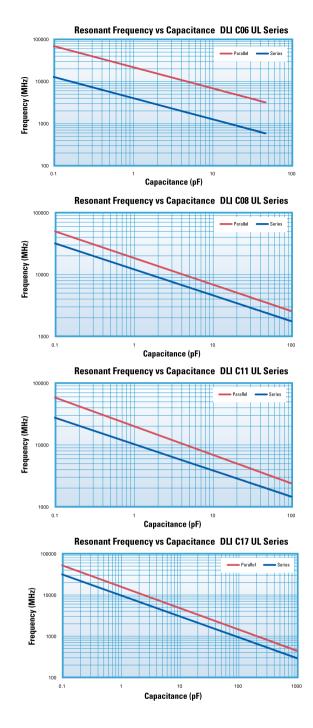
ESR vs Frequency DLI C08 UL Series

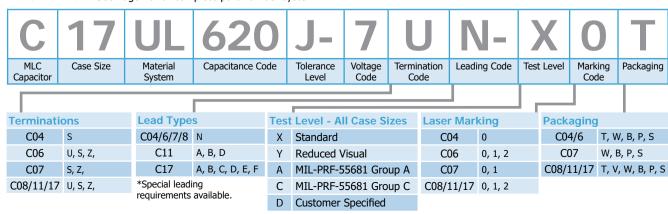


ESR vs Frequency DLI C17 UL Series



Q vs Capacitance DLI C08 UL Series




MLC - UL Series: Ultra Low ESR Ceramic Capacitors

The information above represents typical device performance.

Part Number See Page 28 for complete part number system.

High Q Capacitors - CO4, CO6, C11 and C17 Kits

C06 Engineering Kit

10 Pieces Each of 21 Values

Code

CO4 Engineering Kit 10 Pieces Each of 15 Values

Code	Сар
0R3	0.3pF
0R5	0.5pF
1R0	1.0pF
1R2	1.2pF
1R5	1.5pF
1R8	1.8pF
2R0	2.0pF
2R2	2.2pF
2R7	2.7pF
3R3	3.3pF
3R9	3.9pF
4R7	4.7pF
5R6	5.6pF
6R8	6.8pF
100	10pF
CO4 Broadband Block	120pF

CO4 Designer Kit 10 Pieces Each of 8 Values

10	Pieces	Each	01	ð	value

Kit C	Kit D	Kit E
0R1	0R9	3R9
0R2	1R0	4R7
0R3	1R2	5R1
0R4	1R5	5R6
0R5	1R8	6R8
0R6	2R2	8R2
0R7	2R7	9R1
0R8	3R3	100

Code	Сар
0R3	0.3pF
0R5	0.5pF
1R0	1.0pF
1R2	1.2pF
1R5	1.5pF
1R8	1.8pF
2R0	2.0pF
2R2	2.2pF
2R7	2.7pF
3R3	3.3pF
3R9	3.9pF
4R7	4.7pF
5R6	5.6pF
6R8	6.8pF
100	10pF
150	15pF
180	18pF
220	22pF
270	27pF
330	33pF
470	47pF
CO6 Broadband Block	850pF

CO6 Designer Kit 10 Pieces Each of 10 Values

Kit C	Kit D	Kit E
0R1	1R2	6R8
0R2	1R5	8R2
0R3	1R8	9R1
0R4	2R2	100
0R5	2R7	120
0R6	3R3	150
0R7	3R9	220
0R8	4R7	270
0R9	5R1	330
1R0	5R6	470

DLI reserves the right to substitute values as required. Customers may request particular cap value and material for sample kit to prove out designs. Custom kits available upon request.

C11 Engineering Kit 10 Pieces Each of 28 Values

C17 Engineering Kit 10 Pieces Each of 35 Values

Code			ар
0R3		0	.3pF
0R5		0	.5pF
0R7		0	.7pF
1R0		1	.0pF
1R2		1	.2pF
1R5		1	.5pF
1R8		1	.8pF
2R0			.0pF
2R2		2	.2pF
2R7			.7pF
3R3			.3pF
3R9			.9pF
4R7		4	.7pF
5R6			.6pF
6R8			.8pF
8R2			.2pF
100			0pF
120			2pF
150	15pF		
180			8pF
270	27pF		
330			3pF
390			9pF
470			7pF
560			6pF
680			8pF
820			2pF
101			00pF
CO8 Bi Block	roadbaı		400pF
2.00.0			
	1 Desi		
10 Piec	es Each	of 10	Values
Kit C	Kit D	Kit E	Kit F
0R1	1R0	5R6	270
0R2	1R2	6R8	330
0R3	1R5	8R2	390
0R4	1R8	100	470

120

150

180

220

270

330

2R2

2R7

3R3

3R9

4R7

5R1

0R5

0R6

0R7

0R8

0R9

1R0

510

560 620

680

820

101

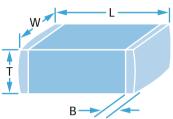
10 Pieces Each of	35 Values	
Code	Сар	
0R3	0.3pF	
0R5	0.5pF	
0R7	0.7pF	
1R0	1.0pF	
1R2	1.2pF	
1R5	1.5pF	
1R8	1.8pF	
2R0	2.0pF	
2R2	2.2pF	
2R7	2.7pF	
3R3	3.3pF	
3R9	3.9pF	
4R7	4.7pF	
5R6	5.6pF	
6R8	6.8pF	
8R2	8.2pF	
100	10pF	
120	12pF	
150	15pF	
180	18pF	
220	22pF	
270	27pF	
330	33pF	
390	39pF	
470	47pF	
560	56pF	
680	68pF	
820	82pF	
101	100pF	
151	150pF	
221	220pF	
331	330pF	
471	470pF	
681	680pF	
102	1000pF	
C08 Broadband Block	2400pF	
C17 Designer Kit 10 Pieces Each of 10 Values		

1/11 0			
Kit C	Kit D	Kit E	Kit F
0R1	1R0	5R6	390
0R2	1R2	6R8	470
0R3	1R5	8R2	560
0R4	1R8	100	680
0R5	2R2	120	820
0R6	2R7	150	101
0R7	3R3	180	221
0R8	3R9	220	471
0R9	4R7	270	681
1R0	5R1	330	102

Broadband Blocks - C04/C06/C08

Description

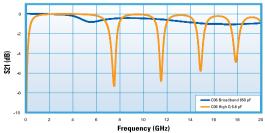
- Resonance free DC Blocking / Decoupling
- Less than 0.25 db loss @ 4 GHz (typical)
- Surface mountable


Functional Applications

- Fiber Optic Links High Isolation Decoupling
- LAN's, VCO Frequency Stabilization Diplexers
- RF/Microwave Modules Instruments Test Equipments

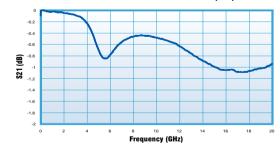
Mechanical Specification

Product	Во	dy Dimen	sions	Band Dimensions (B)		
Code	Length (L)	Width (W)	Thickness (T)	Min	Мах	
CO4BL	0.040" ± 0.008"	0.020" ± 0.006"	0.028" Max	0.003"	0.019"	
CO6 BL	0.060" ± 0.012"	0.031" ± 0.009"	0.036" Max	0.006"	0.03"	
CO8 BL	0.081" ± 0.020"	0.051" ± 0.013"	0.061" Max	0.012"	0.0468"	
C18BL	0.1200" ± 0.925"	0.1100" ± 0.010"	0.100" Max	0.008″	0.045″	

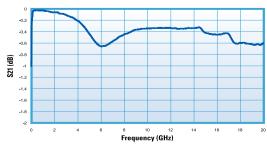

Part Characteristics

Part Number	Capacitance Guaranteed Minimum Value	Voltage Rating	Temperature Coefficient -55°C to 125°C	Maximum Dissipation Factor	Insulation Resistance (MΩ Minimum)	Aging Rate	Frequency Range	Termination
C04BL121X-5UN-X0T	120pF @ 1KHz,.2Vrms	50 Vdc		3.0%@ 1KHz,	-	<=1.5%/ decade hours	10MHz – 40GHz	"U″ & "S″
C06BL851X-1UN-X0T	850pF @ 1KHz,.2Vrms	100 Vdc 50 Vdc					2MHz – 30GHz	"U", "S" & "Z"
C08BL242X-5UN-X0T	2400pF @ 1KHz,.2Vrms	50 Vdc	± 15%				1MHz – 20GHz	"U", "S" & "Z"
C08BL102X-1UN-X0T	1000pF @ 1KHz,.2Vrms	100 Vdc		.201115			1MHz – 20GHz	"U", "S" & "Z"
C18BL103X-4GN-XOT	10,000pF @ 1KHz,.2Vrms	500 Vdc					1MHz – 6GHz	"U", "S" & "Z"

Performance



High Q & Broadband MLC Compared Insertion Loss (S21)



The information above represents typical device performance.

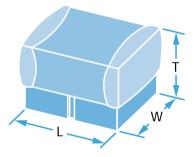
C06BL851X-1UN-XOT Insertion Loss (\$21)

C04BL121X-5UN-X0T Insertion Loss (S21)

Broadband Blocks - Opti-Cap®

Description

- Resonance Free DC Blocking to >40GHz
- Surface Mountable by Solder or Epoxy Bonding
- Available in Tape & Reel or Waffle Pack Format
- Low Frequency Stability over Temperature
- Very Low Series Inductance
- 0201, 0402 or 0603 footprints


Functional Applications

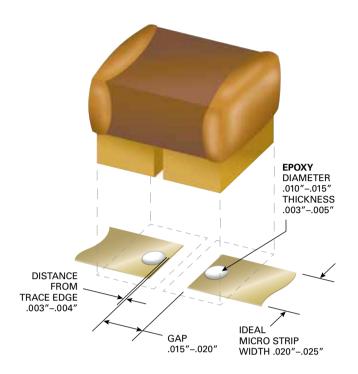
- Improved Low Frequency Stability over Temperature
- Very Low Series Inductance
- X7R Temperature and Voltage Stability

Case Sizes

Coop Size		Milli-Cap [®]		MLC			
Case Size	Length (L)	Width (W)	Thickness (T)	Length (L)	Width (W)	Thickness (T)	
P21 (0201)	0.022" ± 0.006"	0.012" ± 0.002"	0.012" ± 0.002"	0.022" ± 0.002"	0.011" ± 0.001"	0.011" ± 0.003"	
P42 (0402)	0.038" ± 0.004"	0.020" ± 0.002"	0.020" ± 0.002"	0.040" ± 0.002"	0.020" ± 0.002"	0.020" ± 0.002"	
P62 (0603)	0.058" ± 0.003"	0.020" ± 0.002"	0.020" ± 0.002"	0.067" ± 0.004"	0.031" ± 0.004"	0.031" ± 0.005"	

Part Numbers

Part Number	Сарас	itance	Voltage	TOO	IR	DF	Aging Rate	Freq. Range
Part Number	MLC	Milli-Cap [®]	Rating TCC @		@ +20°C	@ 1KHz	%/Decade Hr	3dB (TYP)
P21BN300MA03976	10nF	30pF	10V	X5R	>10² MΩ	3.5%	1.0%	
P21BN300MA04282	22nF	30pF	10V	X5R	>10² MΩ	3.5%	1.0%	
P21BN300MA04572	22nF	30pF	10V	X5R	>10² MΩ	3.5%	1.0%	
P21BN300MA04678	1.5nF	30pF	10V	X5R	>10² MΩ	3.5%	1.0%	16KHz-
P21BN300MA04733	100nF	30pF	10V	X5R	>10² MΩ	3.5%	1.0%	>40GHz
P42BN820MA03152	220nF	82pF	10V	X5R	>10² MΩ	3.5%	1.0%	
P42BN820MA04679	22nF	82pF	50V	X7R	>10² MΩ	3.5%	1.0%	
P62BN820MA02636	100nf	82pF	10V	X7R	>10² MΩ	3.5%	1.0%	


Notes:

- X5R: -55°C to +85°C ΔC ±15%
- X7R: -55°C to +125°C ΔC ±15%
- Termination Metallization 7.5µ" Au over 50µ" Ni
- Recommended attachment is solder or conductive epoxy
- Maximum assembly process temperature 250°C
- For best high frequency performance attach Milli-Cap[®] side to transmission line
- Recommended microstrip gap length is 0.015"

Broadband Blocks - Opti-Cap®

Attachment Methods

DISTANCE FROM TRACE EDGE .001"-.002" GAP .015"-.020" DISTANCE FROM TRACE TOGE .015"-.020" DEAL MICRO STRIP WIDTH .020"-.025"

Recommended Attachment to Soft or Hard Substrate Using Conductive Epoxy:

1. Place a single drop of conductive epoxy onto each micro strip

as illustrated; the edge of the epoxy shall be at least .003"- .004" back from the edge of the trace to prevent filling the gap with epoxy.

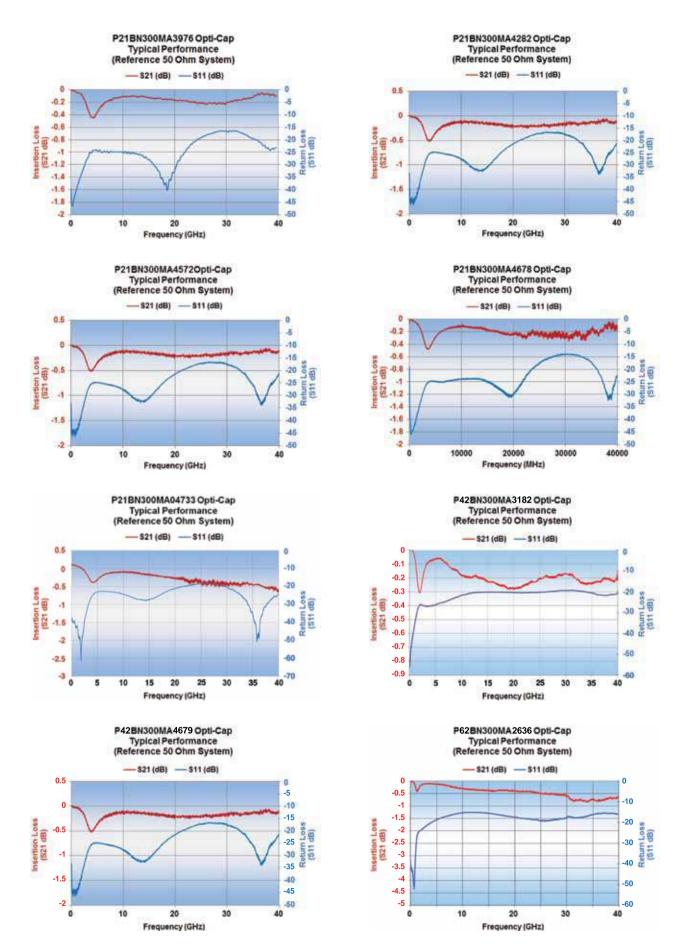
- 2. Centering the termination gap of the capacitor within the gap in the micro strip, press with careful, even pressure onto the micro strip ensuring the terminations make good contact with the epoxy drops.
- 3. Cure according to the epoxy manufacturer's preferred schedule,

typically 125°C to 150°C max.

4. After curing, inspect joint for epoxy shorts across the termination and micro strip gaps that would cause a short across the cap.

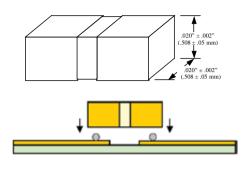
Isopropanol, and Methanol are both safe to use to pre clean Opti-Caps®.

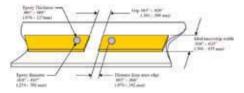
Isopropanol, and Methanol are not to be used after mounting with conductive epoxy as they act as a solvent!


Recommended Attachment to Soft or Hard Substrate Using Solder:

- 1. Place a single drop of solder paste onto each micro strip as illustrated; the edge of the solder shall be at least .001"- .002" back from the edge of the trace to prevent filling the gap with solder.
- 2. Centering the termination gap of the capacitor within the gap in the micro strip, press with careful, even pressure onto the micro strip ensuring the terminations make good contact with the drops of solder paste.
- 3. Reflow according to the solder manufacturer's preferred profile, ensuring the reflow temperature does not exceed 250°C.
- 4. After the reflow step is completed, inspect joint for voids or excess flux and non-reflowed solder balls that can degrade performance or cause shorts across the gaps. Proper cleaning after the reflow process is crucial to avoiding performance degradation and discovering poor solder joints.

Isopropanol, and Methanol are both safe to use with soldered Opti-Caps®.


Broadband Blocks - Opti-Cap®



Broadband Blocks - Milli-Cap® SMD Millimeter Wave Capacitor

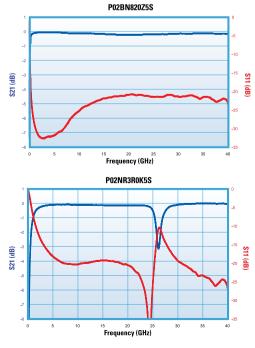
Description

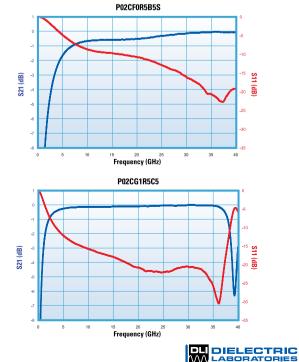
- 0402, 0502 & 0602 Footprints Low Loss High Q part
- Very Low Series Inductance Ultra High Series Resonance
- Matches typical 50Ω Line Widths Preserves Board Space
- Behaves Like An Ideal Capacitor More Usable Bandwidth

Electrical Characteristics

Functional Applications

• Ideal for Test Equipment, Photonics, SONET, Digital radios, and Matching Filter applications


Mechanical Specification

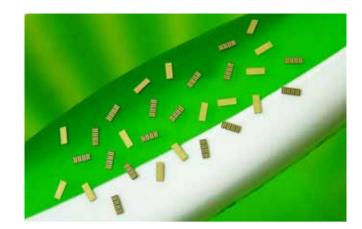

- Terminations: Gold
- Assembly temperatures not to exceed 260°C.

Part Number	Cap.	Voltage Rating	Temperature Coefficient -55°C to 125°C	Maximum Dissipation Factor @25°C	Insulation Resistance (MΩ Minimum)	Aging Rate	Frequency Range
P_2BN820Z5ST	82 pF		± 10%	3.0% @1MHz	10 ⁵ MΩ @ 25°C at rated voltage	<=1.5%/decade hrs	20MHz– 40GHz
P_2NR3R0K5ST	3.0 pF		N1500 ±500PPM / °C	0.25% @1MHz			4–20GHz
P_2CG1R5C5ST	1.5 pF		0 ± 30 PPM	0.70/ @1//			8–32GHz
P_2CG1R0C5ST	1.0 pF	50 Vdc	$0 \pm 30PPM$	0.7% @1KHz	10º MΩ @ 25°C	NI / A*	18–40GHz
P_2CD0R7B5ST	0.7 pF		N20 ±15PPM / °C	0.15% @1MHz	at rated voltage	N / A*	20–46GHz
P_2CF0R5B5ST	0.5 pF						28–40GHz
P_2CF0R3B5ST	0.3 pF		0 ±15PPM / °C	0.6% @1KHz			35–50GHz

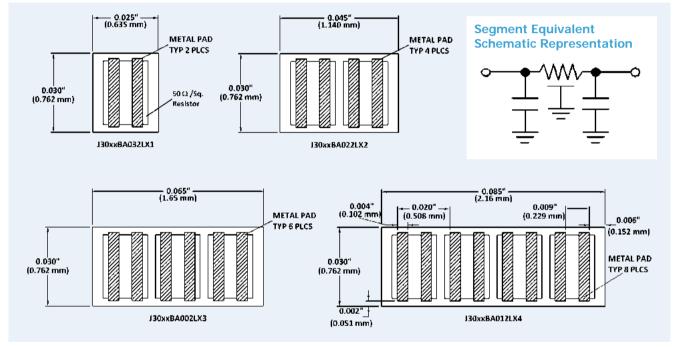
Dimensions Key: P42 = 0402; P02 = 0502; P62 = 0602

Electrical Performance The information below represents typical device performance.

Broadband Blocks - Miniature RF Blocking Network


Description

For RF Noise Suppression in high speed mixed signal semiconductor devices


- Eliminates Noise at I/O Pins
- Replaces Large Decoupling Capacitor
- with Superior Performance
- Clean DC Lines Beyond 18 GHz

Functional Applications

- High Speed Digital Mixed Signal IC's
- Suppression of Noise on DC Supply Lines
- MCM and Hybrid Modules
- X7R Temperature and Voltage Stability

Layout and Dimensions

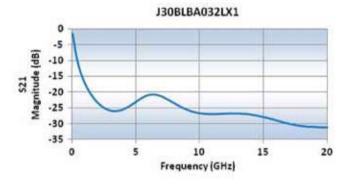
Part Number Identification

J	30	XX	BA01	2	L	Х	4
Product J = Blocking Network	Width (Mils)	Material BL or BJ	Internal Drawing Reference	Voltage 2 = 25 Vdc	Metallization 100μ″ Gold Finish	Test Level Commercial	Number of RC Segments

Material and Electrical Characteristics

Material Code	Capacitance (typical)	Resistance (pad to pad)	DF	тсс	Rated Voltage
BL	30 pF	10Ω Nom.	3.0% Max.	X7R	25 Vdc
BJ	45 pF	10Ω Nom.	3.0% Max.	X7R	25 Vdc

Thin Film - Miniature RF Blocking Network

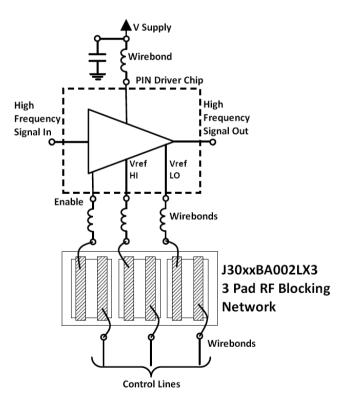

Metallization:

Top: 50•/Square TaN, 300Å TiW, 100 • Inch minimum Au. **Bottom:** 300Å TiW, 100 • Inch minimum Au.

Screening Options

Test Code	Test/Inspection	Sample Size	Description
	Bond Strength	2 Pcs/Plate	2 bonding pads on each sample
Y	IR	1% AQL	21/2 times rated voltage of 25 volts
^	Visual Inspection	100%	4 Side visual screening
	Pad to pad resistance check	1% AQL	Ensure isolation between segments and boarder

Performance



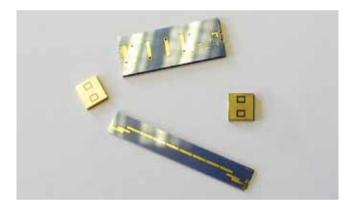
Segment Bonding for Measurement

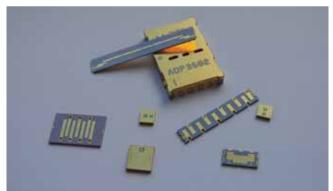
For additional data of multi-segment devices please contact an inside sales representative.

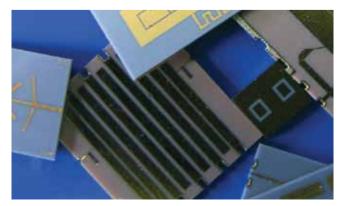
Typical Application

Thin Film - RF Guru Ceramic Filter Request Form

This is an example of the form you'll find on the DLI website (http://dliextra.net/DLIFilterGuru/RFGuru.aspx)


It was developed as a template to make it easy for our customers to enter the information DLI needs for an initial assessment of filter performance, size and cost.


Fill out the "RF Guru" filter request form and your requirement will be automatically sent to DLI engineering.


After submitting this form DLI Applications Engineering will contact you. From these discussions DLI will provide you with further information about possible topologies and predicted filter performance. Then you can decide if a filter on a high-k dielectric is the right option for you.

Please note: This is not an order form. There is no obligation until you are confident in our capabilities and actually decide to place an order.

If you're looking for a catalog off the shelf solution you might find our EAR99 classified catalog filters on the following pages helpful.

Cartering and and it insert mean (1 & Starter

fabre fere femer te fteme

. (A) again also par true and albeit, a fair Again also Dispress and united but in discuss hits the segments

The card and articlast factor for factor for an etc.

Thin Film - Ceramic Filters

Typical Filter Types:

- Bandpass Filters from 500MHz 67GHz
- Lowpass Filters from 500MHzz 67GHz
- Highpass Filters from 500MHz 67GHz
- Notch Filters from 500MHz 67GHz
- Duplexers and Diplexers from 1GHz 30GHz
- Cavity Filters from 6GHz 25GHz

Typical Characteristics:

- RF power handling up to 20 watts (function of topology, BW and other variables)
- Steep selectivity (number of poles) "n" 2 to 20 poles
- Fractional bandwidths up to 80%
- Low insertion loss
- Flat amplitude ripple and group delay
- Solder-surface mount designs
- Chip and wire designs

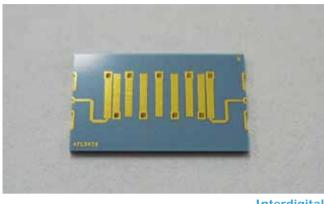
Typical Filter Topologies:

- Interdigital
- End Coupled
- Edge Coupled
- Hair Pin
- Edge End Coupled
- Combline and Pseudocombline
- Dual Mode
- Quasi-lumped

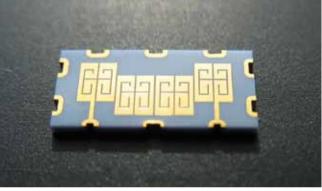
Advantages of DLI High K Ceramics and Thin Film Processing:

- Size reduction over Alumina and PWB materials
- Extremely temperature stable from -60°C to +125°C
- Thin Film Precision Tight geometry tolerance
- High repeatability and no tuning required
- Improved field confinement
- Lower CTE mismatch in SMT appicaltions: Smaller size and low CTE ----> Less stress, and higher reliability

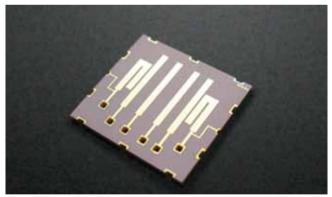
Note: 67GHz is an artificially imposed limit currently set by the test equipment at DLI.


Mounting Information

PCB ground pattern length and width can be 0.002-0.003 inches larger than filter footprint. Dimensions of filter launch and PCB launch pattern should be closely matched. It is suggested that PCB ground metal be pulled back from RF I/O trace to account for component alignment tolerance. Ground via depth and spacing should be set so as not to create any resonances at the frequency of operation.


Reference SMT Filter Mounting application note for additional mounting information.

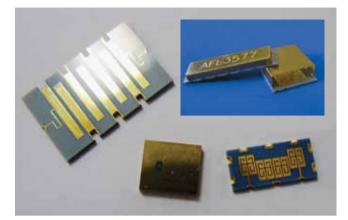
Individual footprint diagrams of all Filters are available upon request from the DLI Sales Office.


Typical Weight: <0.3 grams Typical Area: <0.1 in² Typical Volume: <0.01in³

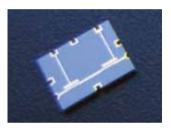
Interdigital

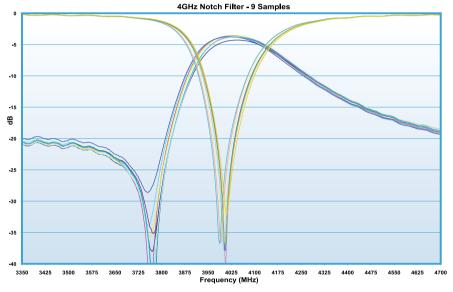
Dual Mode

Combline



Hairpin


Thin Film - Ceramic Filters


DLI has expanded its filter capability beyond microstrip bandpass designs. Notch filters, lowpass and highpass filters, ceramic cavity filters, and various other filter types are now available. All filters employ DLI's high-K ceramics which allow for great size reduction and unbelievable temperature stability compared to alumina and PWB materials. Solder surface mount and chip and wire filters are all possible.

4GHz Notch Filter

>20dB attenuation at 4GHz >Low loss in passband regions: 1.5dB >Small size: .25 x .196 x .02 inches >Solder surface mount device >Picture below

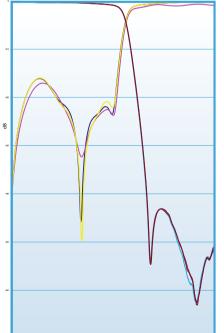


Typical Lowpass Filter >Low loss in passband: 1.0dB >40dB attenuation in stopband >Typical size: .4 x .25 x .015 inches

>Chip and wire filter [mounted on PCB with epoxy]

>Devices scalable from L to Ka band

NOTE: See our website for more details.



Cavity Filter - 5 Sample

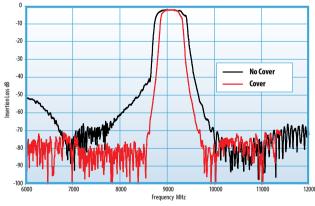
Typical Cavity Filter

>Ceramic cavity filter design on CF ceramic

>Low loss in passband: 3.5dB typical >Typical size: .75 x .18 x .03 inches >Devices scalable from X to Ku band >Bandwidth 1 to 3%

Lowpass Filter - 3 Samples

ы од од њи од об 47 од од 1 1,1 12 12 14 15 16 17 14 Frequency (Normalized)

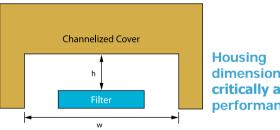

Thin Film - Ceramic Filter Packaging and Shielding

Exceptional performance demands rigorous engineering, both of the component and of its interaction with the system. The design of the filter's shielding is a crucial element for achieving laboratory-grade performance outside of the laboratory and assuring smooth integration with the system. Shielding protects the filter from interference and creates a precisely controlled micro-environment for optimal performance. There are three packaging options available for RF shielding:

Filter with printed wire board cover

Printed wire board (PWB) covers are one solution offered by DLI. This style of cover offers excellent RF shielding for solder surface mount applications. Additionally, PWB covered components are extremely resistant to high shock and vibration environments.

High K substrate provides Higher Field Confinement – 9 GHz Filter (30 mil CF with and without cover).


Filter with sheet metal cover

These covers are attached using epoxy; the cured assemblies offer a small and sturdy surface mount package that can integrate multiple filters in one pc. The overall height of the package is typically 0.1 inch. A second option for shielding is the attachment of an integral metal cover to the filter. Sheet metal covers are compatible with both solder surface mount and chip and wire filter applications.

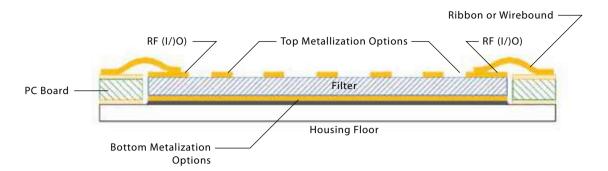
Typically, this style of cover has tabs that fit into the ground vias along the perimeter of the part and a high-temperature solder is used for the assembly. Covers can be recessed to expose the I/O contact pad for chip and wire filters to allow wire-bonding. The I/O contact pad is not plated with a solderable metal scheme to facilitate reliable wire bonding. The overall assembly height can vary from 0.07 to 0.1 inches.

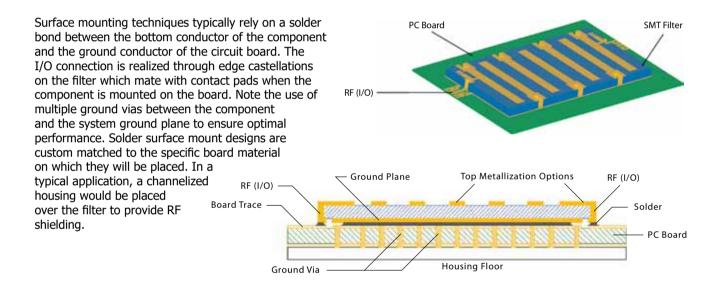
The third option leaves packaging up to the customer. Either the next level of assembly provides the RF shielding for the filter or the customer can have their own cover integrated. DLI's engineering team can provide recommendations for housing dimensions, leveraging years of expertise to ensure successful design integration.

If the customer provides their own shielding for the filter, it is very important that DLI engineering knows the channel width and cover height that will enclose the device. These dimensions will be taken into account during design and test to ensure that the part will work in its next level of assembly.

dimensions critically affect performance

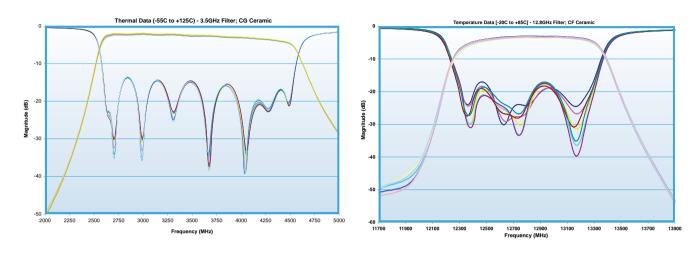
Solder Stop

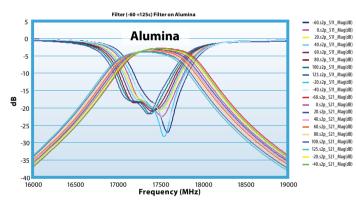

Prevents solder from wicking through vias onto critical features during SMT processing

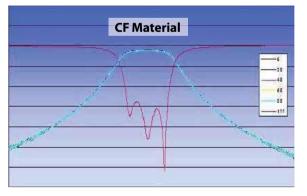


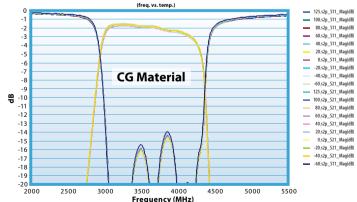
Thin Film - Ceramic Filter Mounting

DLI offers metallization schemes compatible for both chip and wire filters, and solder-surface mount filters. The correct metal scheme will be employed to ensure reliable connectivity depending on the desired mounting method. Custom metallization schemes are also available. Please consult the factory for more details.

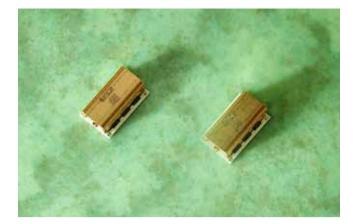

The above illustration demonstrates the mounting of a typical chip and wire filter. The circuit is relieved to accommodate the filter. The bottom surface of the part is attached directly to the system ground plane using conductive epoxy. Wire or ribbon bonds are launched from the circuit to the filter I/O pad. In a typical application a channelized housing would sit over the filter to provide adequate RF shielding.


Thin Film - Ceramic Filter Temperature Stability


The primary ceramics used in DLI filter designs are CF [K=23] and CG [K=67]. Both of these materials exhibit extreme temperature stability across a wide range of frequencies. So regardless of the filter operating frequency, no guard band needs to be designed into the device to meet a demanding temperature requirement. CF and CG


also do not out gas, do not exhibit signs of aging, and have been exposed to a mega-rad of total radiation dosage with no degradation in performance. The filters will perform the same from outer space to the desert. The graphs below demonstrate the extreme stability of DLI custom ceramic devices.

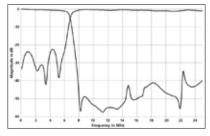
Stability Over Temperature (-60° to +125° C)

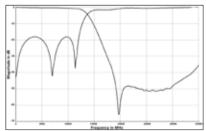

Thin Film - Surface Mount Lowpass Filter Series

Description

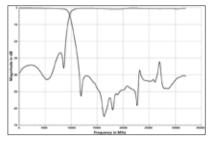
DLI introduces its new high frequency surface mountable catalog lowpass filters. These LPF's incorporate DLI's high dielectric ceramic materials which provide small size and minimal performance variation over temperature. The catalog LPF's are offered in a variety of frequency bands, which offers a drop in solution for high frequency attenuation.

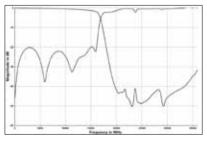
Features

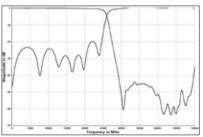

- Small Size SMD device Fully Shielded Component
- Frequency Stable over Temp. Excellent Repeatability
- Operating Temp: -55°C to +125°C
- Characteristic Impedance: 50Ω
- 100% Tested and Inspected

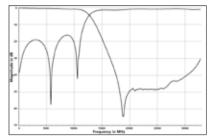

Current Current I and				Part Number			
Specification	L065XG9S	L095XG9S	L117XH4S	L128XH4S	L157XG3S	L204XF4S	L254XF3S
3 dB Cutoff	6.5 GHz	9.5 GHz	11.7 GHz	12.8 GHz	15.7 GHz	20.4 GHz	25.4 GHz
Passband	DC - 6 GHz	DC - 9 GHz	DC - 11 GHz	DC - 12 GHz	DC - 15 GHz	DC - 20 GHz	DC - 25 GHz
Max Insertion Loss in Passband	1.3 dB	1.3 dB	1 dB	1.2 dB	2.2 dB	1.8 dB	1.4 dB
Min VSWR in Passband	1.22:1	1.12:1	1.43:1	1.38:1	1.3:1	1.43:1	1.3:1
Min Rejection	7.9 - 22.4 GHz (35 dB)	11.5 - 32 GHz (30 dB)	17.6 - 30 GHz (40 dB)	18.8 - 32 GHz (40 dB)	19.9 - 32.2 GHz (40 dB)	23 - 43 GHz (30 dB)	29 - 50 GHz (30 dB)
Usable temp. Range				-55 to +125°C			
Length - Inches (mm)	0.220 (5.58)	0.220 (5.58)	0.220 (5.58)	0.220 (5.58)	0.220 (5.58)	0.220 (5.58)	0.220 (5.58)
Width - Inches (mm)	0.180 (4.57)	0.140 (3.56)	0.140 (3.56)	0.140 (3.56)	0.140 (3.56)	0.140 (3.56)	0.140 (3.56)
Height - Inches (mm)	0.103 (2.62)	0.103 (2.62)	0.103 (2.62)	0.103 (2.62)	0.103 (2.62)	0.078 (1.98)	0.078 (1.98)

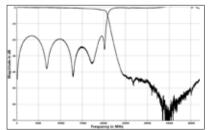
Typical Measured Performance


L065XG9S - 6.5 GHz


L128XH4S - 12.8 GHz


L095XG9S - 9.5 GHz


L157XG3S - 15.7 GHz

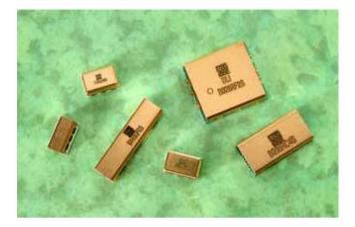

L254XF3S - 25.4 GHz

L117XH4S - 11.7 GHz

L204XF4S - 20.4 GHz

Thin Film - 2 to 18 GHz Bandpass Filter Series

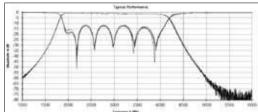
Description

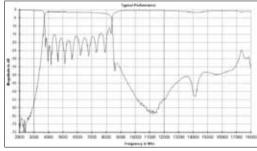

Utilizing DLI's high permittivity, NP0 ceramics allow for small size, temperature stable performance over frequency and high reliability in environmentally challenging conditions. This series of bandpass filters was designed to span the popular 2-18 GHz frequency range. The compact size and surface mount attachment allow for low cost of manufacturing without sacrificing performance and repeatability. Designed for use on PCB 8-12 mils thick with a permittivity of 3.0-3.8.

Features

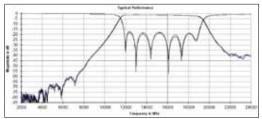
- Small Size Fully Shielded Component
- Frequency Stable over Temperature

Applications

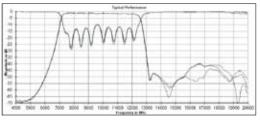

- C, X and Ku Band Satellite communications Satellite TV
- Weather and Radar Radar and Military communications


Creatificati				Part number		
Specificati	on	B028RF2S	B033ND5S	B056RC4S	B096QC2S	B148QF0S
Center Frequency		3 GHz	3.5 GHz	6 GHz	10 GHz	15 GHz
Passband		2 to 4 GHz	3.1 to 3.5 GHz	4 to 8 GHz	8 to 12 GHz	12 to 18 GHz
Insertion	@ 25°C	2.5 dB	2.0 dB	3.0 dB	2.5 dB	3.1 dB
Loss (@Fc)	-40 to +85°C	3.0 dB	3.2 dB	3.5 dB	3.0 dB	3.6 dB
VSWR - 50	V System	1.63:1 2 to 4 GHz	2.00:1 3.1 to 3.5 GHz	1.5:1 4 to 8 GHz	2.0:1 8 to 12 GHz	1.63:1 12 to 18 GHz
Rejection		dc to 1.25 GHz (40 dB)	dc to 2.6 GHz (30 dB)	dc to 3 GHz (40 dB)	dc to 6 GHz (40 dB)	dc to 7.6 GHz (40 dB)
Rejection		4.85 to 6 GHz (40 dB)	4 to 6 GHz (40 dB)	9.5 to 12 GHz (40 dB)	14 to 18 GHz (40 dB)	22.5 to 25 GHz (30 dB)
Usable Tem	perature Range			-55 to +125°C		
Length - Inc	hes (mm)	0.450 (11.43)	0.393 (9.98)	0.450 (11.43)	0.400 (10.86)	0.550 (13.97)
Width - Inch	es (mm)	0.400 (10.16)	0.353 (8.97)	0.230 (5.84)	0.180 (4.57)	0.150 (3.81)
Height - Inch	nes (mm)	0.113 (2.87)	0.128 (3.25)	0.100 (2.54)	0.100 (2.54)	0.098 (2.49)

Typical Performance

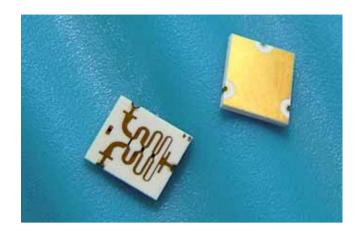

B028RF2S - 2 to 4 GHz

B056RC4S - 4 to 8 GHz

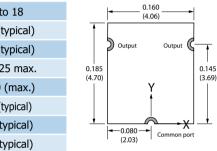

B148QF0S - 12 to 18 GHz

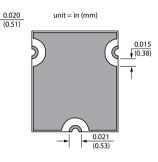
B033ND5S - 3.1 to 3.5 GHz

B096QC2S - 8 to 12 GHz

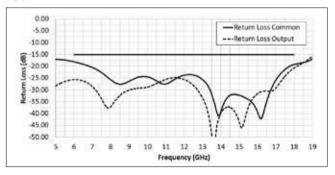

Thin Film - Wilkinson Power Divider

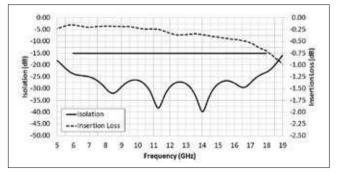
Description - Part number PDW05758


DLI introduces its new high frequency surface mountable Wilkinson Power Divider. The power divider utilizes DLI's high dielectric ceramic material which provides small size and minimal performance variation over temperature. The compact size, broad band performance and ease of integration make this power divider ideal anywhere board space is of a premium and quality signal splitting or combining is required.


Features

- Broad Band 6 to 18 GHz Performance
- 0.7dB Typical Insertion Loss
- 20dB Typical Isolation and Return Loss
- Excellent Phase and Amplitude Balance
- Compact Solder Surface Mount Package

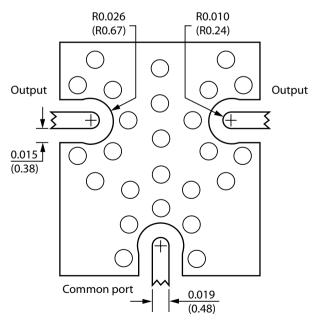

Physical Dimensions



Shaded areas are solderable metal

Typical Measured Return Loss

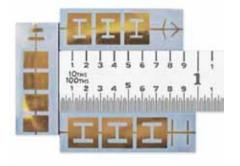
Typical Measured Isolation and Insertion Loss

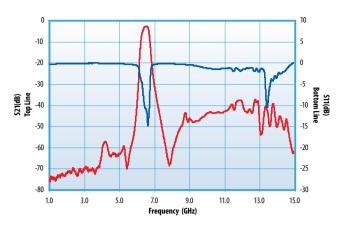

Electrical Specification

Frequency Range (GHz)	6 to 18
Nominal Power Splitting (dB)	3.0 (typical)
Nominal Phase Shift (degrees)	0.0 (typical)
Amplitude Balance (dB)	±0.025 max.
Phase Balance (degrees)	±3.0 (max.)
Excess Insertion Loss (dB)	0.7 (typical)
Return Loss (dB)	20 (typical)
Isolation (dB)	20 (typical)
Input Power as a Splitter (W) ²	5 (max.)

Electrical Specifications at 25°C; Over Temperature Performance TBD.
 Load VSWR not to Exceed 1.20 ; 1.00; Base

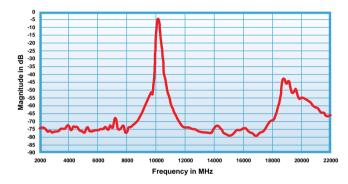
Temperature not to Exceed 85°C.


Recommended PCB Layout Dimensions

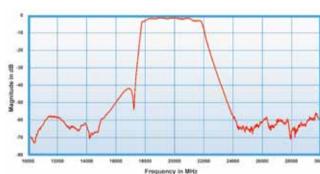

Thin Film - Symmetric Dual Mode Resonator Filter

Description

- High seectivity, (>-60 dB rejection in 1% bandwidth distance from center High Q (low loss) Low loss
- Temperature stable
- 16 pole design with integrated trap to surpress harmonics



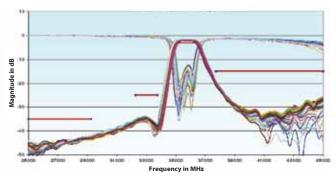
6.5 GHz Symmetric Dual Mode Bandpass Filter



Thin Film - 10GHz 4 Pole Band Pass with Bandstop Filter

Size: 0.9 x 0.2 x .02 Inches

Thin Film - 20 GHz 8 Pole SMT Filter

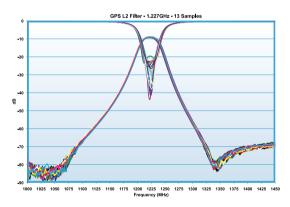

Size: 420 x 90 x 15 mils

Thin Film - 36 GHz Filter Repeatability

70 Samples from Multiple Substrates and Material Lots

10 mil CF (K23) Material

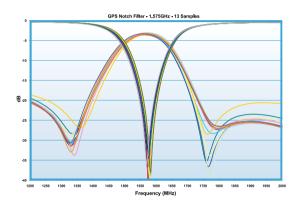
- Highly repeatable performance
- Excellent temperature stability

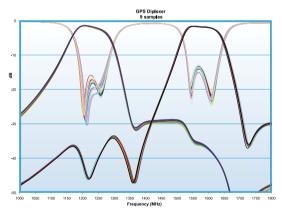

Thin Film - GPS Filters

DLI introduced a family of GPS components that includes two bandpass filters, two diplexers, and a notch filter. The bandpass filters and diplexer pass both L1 and L2 frequency bands. The notch filter attenuates the L1 frequency band.

Two different versions of the diplexer have been designed and manufactured. The first version has higher insertion loss but better rejection due to a narrow bandwidth. The bandwidth was widened on the second version to reduce the insertion loss at the cost of eroding the rejection skirts. Data for the second version is presented below.

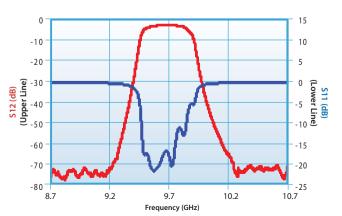
The bandpass filters and diplexer incorporate DLI's new printed wire board cover technology. The PWB cover provides RF shielding and reduces the possibility of energy coupling from the filters to other components in the circuit.




The notch filter incorporates an integral metal cover for RF shielding.

All components are solder surface mount compatible and would make a nice temperature stable drop-in for any GPS application.

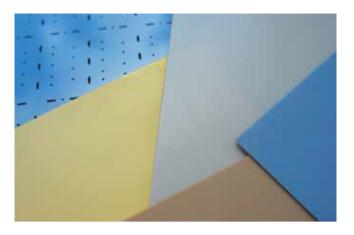
The data here represents typical performance for all of the devices.



Thin Film - 9.7 GHz End Coupled Filter

Features

- 7-Pole End Coupled Filter
- 4% Bandwidth (400 MHz)
- Insertion Loss <2.7 dB
- Size (1.1" x 0.1" x 0.03") but...
- Typical cover height is 6X material thickness –
- between 75 and 100 mils


Thin Film - High-K Ceramic Substrates and Plates

High K substrates are used for circuit miniaturization. DLI offers complete fabrication services!

Case Sizes and Tolerances

For custom sizes please contact the sales office.

Case	Length	Width	Tolerance				
Size (Inches)		(Inches)	Plates (H) ± (Inches)	Substrates (S) ± (Inches)			
10	1.000	1.000	Substrates Only	.002			
15	1.000	1.500	.050	.002			
20	2.000	2.000	.050	.002			
25	2.500	2.500	.050	.002			
30	3.000	3.000	.050	.002			
40	4.000	4.000	.050	.002			

Material Specifications

Material Code	Relative ξr* @ 5 GHz	TCC†Loss ppm/°C	Coefficient of Tangent* % Max	Thermal Thermal Expansion ppm/°K	Conductivity W/m-°K
QZ	3.82 (@ 1MHz)	Fused Quartz	0.0015 (@ 1MHz) 0.033 (@ 24 GHz)	0.55	1.28
AG	8.85 ± 0.35 (@ 1MHz)	Aluminum Nitride	0.10	4.6	140-180
PI	9.9 ± 0.15 (@ 1MHz)	Alumina 99.6%	0.01	6.5 - 7.5	27
PG	12.5 ± 0.5	P22 ± 30	0.02	7.6	_
AH	20 ± 0.5	P90 ± 20	0.02	9.6	1.56
NA	23 ± 1	N30 ± 15	0.03	10.1	1.56
CF	25 ± 2	0 ± 15	0.15	9.0	1.56
CD	38 ± 1	N20 ± 15	0.04	5.8	1.59
CG	67 ± 3	0 ±30	0.10	9.0	1.59
NR	152 ± 5	$N1500 \pm 500$	0.06	10.0	2.72

*Unless otherwise specified K dielectric measurement at approximately 5 GHz. †For the temperature range -55 to 125°C.

Surface Finish

Code	Roughness R _a	Material Process				
Х	>50 µ in.	As-Fired				
Y	20 µ in.	Machined				
Z	<5 µ in.	Polished				
S	Special - Drawing req'd					

Metallization

Code	Description
Х	No Metallization
М	300 Angstroms TiW, 100 μ in. min. Au
N	300 Angstroms TiW, 50 μ in. min. NiV, 100 μ in. min. Au
Р	75 μ in. min. Nickel, 100 μ in. min. Au
L	Top 50 Ohms/sq. TaN, 300 Angstroms TiW, 100 μ in. min Au.
L	Bottom Side 300 Angstroms TiW, 100 µ in. min. Au
E	Metallized and etched per Customer drawing
Т	300 Angstroms min. TiW, 50 μ in. min. NiV, 300 μ in. min. Au-Sn
D	SPECIAL, Customer Drawing Required!

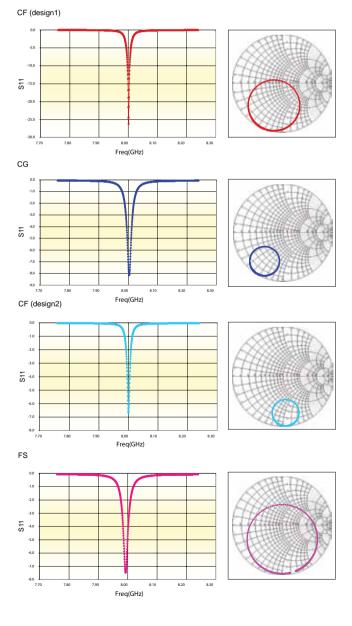
Screening Options

	Test Code	Test/Inspection	Sample Size	Description
	Х	Visual Mechanical	100%	Verify that the required area is available and continuous (Broken corners allowable).
	IZ.	Visual Mechanical	100%	Verify that the required area is available and continuous (Broken corners allowable).
K		Kent Test	10% of lot	K and Loss.
	D	Customer Defined		Customer Drawing Required!

Part Number Identification

S	20	CG	250	D	Z	Ν	X		
Product	Case Size	Material	Thickness	Thickness	Surface	Metallization	Test Level		
S = Substrate	10	See material table above.	100 = .010''	Tolerance	Finish	See table above.	Х		
H = Plate	15	table above.	155 = .0155"	$D = \pm .0005$	Х		К		
	20		250 = .025	$E = \pm .001$	Y		D		
	25				Z				
	30				S				
	40								
Thickness Code. A three digit code representing the thickness in mils. Thickness Tolerance Codes									

Examples: Code $100 = .010^{"}$, Code $155 = .0155^{"}$, Code $250 = .025^{"}$ Please consult with an applications engineer for thicknesses < .010" Thickness Tolerance Codes $D = \pm .0005 - Machined or Polished$ $E = \pm .001 - Standard$


Thin Film - Ceramic Resonators

DLI has a family of patent pending high-Q ceramic cavity resonators. They provide an ideal solution for high performance, low-cost microwave, or millimeter wave oscillators. The devices are fully shielded and designed on our temperature stable, high dielectric constant ceramics.

Frequencies of resonator designs range from <1.0 to >67GHz. Designs can be customized for either soldersurface mount or chip and wire applications. High reliability thin film gold metallization is employed and frequency tolerances as low as 0.1% are attainable.

DLI has developed an equivalent circuit modeling tool for cavity resonators. The tool enables optimization of resonator based oscillator designs and constrains circuit element values to realizable combinations. Three models are shown below, at 8GHz, using CF ceramic, one using FS, and one using CG.

Please consult DLI Applications Engineering for a copy of the modeling tool.

DLI resonators are direct in frequency. So in addition to all of the other benefits no multiplication is required as there would be in other technologies. As a solid block of ceramic they are also non microphonic

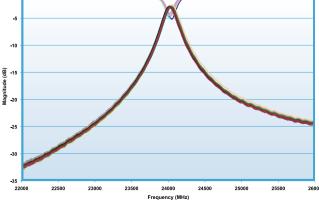
.....Imagine the possibilities!

Types of Applications

Systems

INSTRUMENTATION AUTOMOTIVE

6.8GHz oscillator


RADAR • Ground-based • Avionics/Missile • Shipboard COMMUNICATIONS • Base Stations • WLAN, WLL • SONET/SDH MILITARY • RFID • ECM/ECCM/EW • Tx/Rx • Man Pack Radio • Aerospace • Intelligent Munitions

Circuits

- Microwave and Millimeter-Wave Oscillators
- Fundamental Fixed Frequency Oscillators Ultra-low Phase Noise (former solution: expensive DRO's and multiplied-up crystal or SAW based device with decreased performance)
- Narrow-Band Tunable VCO or Phase Locked Oscillators (typically ± 3% tuning) (former solution: varactor tuned expensive DRO)
- Integration of high performance Oscillators directly on the system motherboard without the expense and complexity of subassemblies, housing and labor intensive operations typical of former solutions.
- Narrow bandwidth low loss filters (former solution: low loss SAW devices with frequency limitation and poor performance)

Two port resonators can also be realized for varactor-tuned oscillator and feedback oscillator applications. The devices can also be implemented as one-pole bandpass filters. These are fully shielded and designed on temperature stable ceramics like the one port resonators. Below is required information for a two port resonator design and measured test data of a two port resonator at 24GHz.

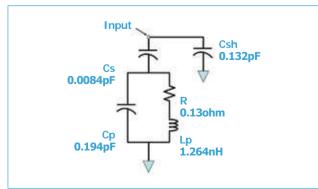
Electrica	Specification	General Information						
Resonant Frequency	Fc =GHz Tolerance:%	Resonator Application	Varactor - Tuned OSC Feedback OSC Filter					
Doubly Loaded Q	QL =	Size Restriction	Max width: Max length: Max thickness:					
Maximum Insertion Loss At Fc	insertion IL =dB		Solder Surface Mount Epoxy Attach					
0 24GHz Two Port Cavity Resonator - 15 Samples								
-5 -								

DLI DIELECTRIC

Thin Film - Single Frequency Cavity Resonator

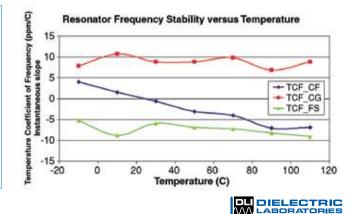
The table summarizes the characteristics of selected standard resonators to illustrate the primary resonator design variables. The primary variables are frequency of resonance, cavity material dielectric constant and length-by-width dimensions. The interaction of these variables is illustrated in the resonator size charts on Page 62. The loaded Q of the resonators is effected by the coupling coefficient (denoted in the tables in terms of return loss), the material choice (dielectric constant), and by material thickness. Generally, resonators made from thick, low dielectric constant materials are capable of the highest loaded Q's. For reference, when a resonator has a coupling coefficient of 1.0, it will exhibit an excellent return loss at the resonant frequency and the unloaded Q will be 2

times the loaded Q value. The desired level of resonator coupling varies with individual circuit requirements such as varactor frequency tuning or transistor negative resistance value. The unloaded Q's of the cases shown range up to 2,000, clearly a new standard for a component compatible with automated assembly. In contrast to other "high Q" microwave resonators, DLI's cavity resonator is completely self contained. Large, expensive housings are not needed. Its loaded Q and resonant frequency can be directly measured using RF coplanar probe technology. Thus, ambiguities of special test fixtures and components which are not appropriate to the product realization are eliminated from part evaluation.


Resonant Frequency (GHz) *1	Material	Temperature Coefficient of Frequency *2	Return Loss @ Resonance Typical (dB)	Loaded Q Typical (50 OHMS)		nsions V x T
		(Typical 9PPM/°C)	Typical (ub)	(30 011113)	mm	Inches
3.2	CG	+8.8	-22	290	8.1 x 8.1 x 3.0	0.32 x 0.32 x 0.12
5.0	CF	-2.3	-12	550	8.1 x 8.1 x 3.0	0.36 x 0.36 x 0.12
5.0	CG	+8.8	-12	360	5.1 x 5.1 x 3.0	0.20 x 0.20 x 0.12
5.0	FS	-7.3	-12	1000	21.8 x 21.8 x 3.8	0.86 x 0.86 x 0.15
6.8	FS	-7.3	-9	1050	15.7 x 15.7 x 3.0	0.62 x 0.62 x 0.12
8.2	CF	-2.13	-25	250	5.3 x 5.3 x 0.8	0.21 x 0.21 x 0.03
9.95	CF	-2.3	-11	300	5.6 x 4.3 x 0.8	0.22 x 0.17 x 0.03
12.8	CF	-2.3	-7	350	3.8 x 3.6 x 0.8	0.15 x 0.14 x 0.03
18.65	FS	-7.3	-25	400	6.1 x 5.6 x 1.0	0.24 x 0.22 x 0.04
24.0	CF	-2.3	-12	480	21.8 x 21.8 x 3.8	0.86 x 0.86 x 0.15
24.0	FS	-7.3	-12	1000	4.6 x 4.6 x 3.0	0.18 x 0.18 x 0.12
26.5	FS	-7.3	-20	325	4.2 x 4.2 x 0.5	0.16 x 0.16 x 0.02
40	FS	-7.3	-18	445	2.7 x 2.7 x 0.5	0.10 x 0.10 x 0.02
50	FS	-7.3	-17	400	2.2 x 2.2 x 0.5	0.08 x 0.08 x 0.02
67	FS	-7.3	-12	600	1.6 x 1.6 x 1.0	0.06 x 0.06 x 0.04

Representative Sampling of Resonator Characteristics

*1 Frequency Tolerance 0.1~ 1% *2 Over the range -60°C to + 125°C


The equivalent circuit of the Single Frequency Cavity Resonator (SFCR) near its lowest resonant frequency is shown below. The lowest resonant mode is typically employed in oscillator and filter designs. The element values are shown for a 9.95 GHz SFCR. The resonant frequency is set by the parallel combination of Cp and Lp, and the finite unloaded Q by R. The series capacitance Cs connects the resonator L-C to the input pad, thus setting the coupling between the external circuit and the frequency controlling L-C resonator. The capacitance Csh is a stray capacitance between the input pad and ground. All of these network elements have excellent repeatability providing tight control

Equivalent Circuit of a 9.95 GHz SFCR

over resonant frequency, coupling and input impedance. The structure also provides an integrated DC blocking function, thus eliminating a tolerance sensitive element from the bill of materials. For wide bandwidth circuit modeling, S-Parameters are recommended. S-Parameters are available for downloading from our website (www.dilabs.com). The resonators are readily customized for frequency, coupling, Q, tunability and assembly requirements.

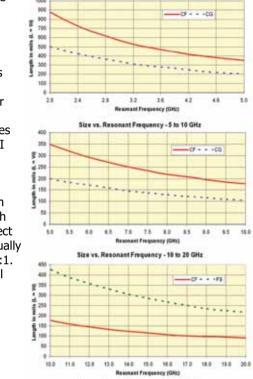
The Graph below depicts typical Single Frequency Cavity Resonator frequency stability versus temperature for DLI standard dielectric materials.

Thin Film - Single Frequency Cavity Resonator

Standard Frequencies for SFCR

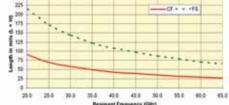
DLI has established a series of standard specific frequency resonators (EAR 99) which have the ability to be laser trimmed down in frequency by approximately 2% of the actual resonant frequency. The resonators incorporate lithography defined 'snake eyes' that the laser can recognize as a starting point to trim through the gold. Frequencies above and below this range of standard frequencies are obtainable. Please contact DLI Applications Engineering for more details.

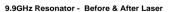
Resonant	Tunable	Resonant	Tunable	Resonant	Tunable
Frequency	Range	Frequency	Range	Frequency	Range
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
3000	60	11600	232	28000	560
3100	62	11800	236	28500	570
3200	64	12000	240	29000	580
3300	66	12200	244	29500	590
3400	68	12400	248	30000	600
3500	70	12600	252	30600	612
3600	72	12800	256	31200	624
3700	74	13000	260	31800	636
3800	76	13200	264	32400	648
3900	78	13400	268	33000	660
4000	80	13600	272	33600	672
4100	82	13800	276	34200	684
4200	84	14000	280	34800	696
4300	86	14200	284	35000	700
4400	88	14400	288	35700	714
4500	90	14600	292	36400	728
4600	92	14800	296	37100	742
4700	94	15000	300	37800	756
4800	96	15300	306	38500	770
4900	98	15600	312	39200	784
5000	100	15900	318	39900	798
5200	104	16200	324	40000	800
5400	108	16500	330	40800	816
5600	112	16800	336	41600	832
5800	116	17100	342	42400	848
6000	120	17400	348	43200	864
6200	124	17700	354	44000	880
6400	128	18000	360	44800	896
6600	132	18300	366	45000	900
6800	136	18600	372	45900	918
7000	140	18900	378	46800	936
7200	144	19200	384	47700	954
7400	148	19500	390	48600	972
7600	152	19800	396	49500	990
7800	156	20000	400	50000	1000
8000	160	20400	408	51000	1020
8200	164	20800	416	52000	1040
8400	168	21200	424	53000	1060
8600	172	21600	432	54000	1080
8800	176	22000	440	55000	1100
9000	180	22400	448	56100	1122
9200	184	22800	456	57200	1144
9400	188	23200	464	58300	1166
9600	192	23600	472	59400	1188
9800	196	24000	480	60000	1200
10000	200	24400	488	61200	1224
10200	204	24800	496	62400	1248
10400	208	25000	500	63600	1272
10600	212	25500	510	64800	1296
10800	216	26000	520	66000	1320
11000	220	26500	530	67000	1340
11200	224	27000	540		
11400	228	27500	550		

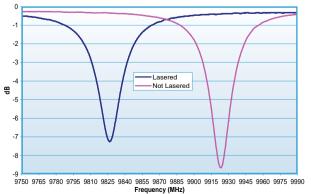

*1 Frequency Tolerance 0.1~ 1% *2 Over the range -60°C to + 125°C

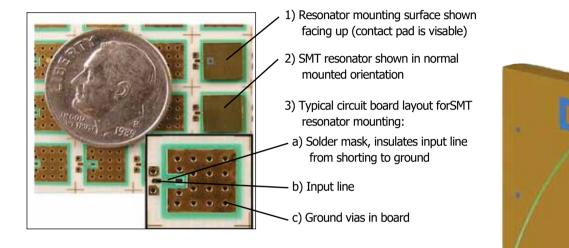
The graph to the left shows a 9.9GHz resonator tuned down in frequency by laser trimming slots through the gold metallization. In this particular example the part was lasered approximately 96MHz lower than its true resonant frequency. Tuning resonators up in frequency is possible by using photolithography to define slots on the top side of the resonator circuit. Wirebonding across the slots will tune the device up in frequency.

Estimating Resonator Size


The size of the cavity resonator is determined by the desired resonant frequency and the ceramic material selected. At the same resonant frequency, a higher dielectric constant material will offer reduced size compared to a lower dielectric constant material. Resonators are typically designed on




Size vs. Resonant Frequency - 2 to \$ GHz


250

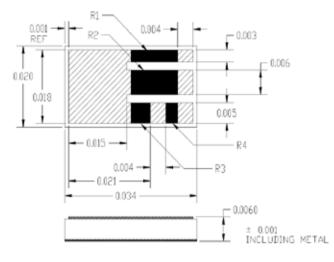
Thin Film - Single Frequency Cavity Resonator

Mounting Alternatives

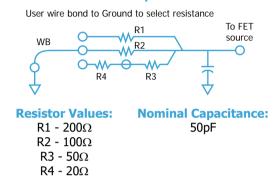
The illustrations demonstrate a surface mounting technique. The first resonator is positioned with the I/O pad in view to demonstrate the alignment with the printed wire board geometry [1]. The second illustration shows the resonator mounted in position [2]. The third illustration shows the printed wire board geometry [3a-c]. A solder mask is used to control the flow of solder during assembly and insulate the input line from shorting to the resonator ground metallization. A solderable metal scheme with a nickel barrier will be employed on the resonators. A thin outer layer of gold will prevent oxidation of the nickel.

Microstrip Mount

This picture illustrates a microstrip mounting technique. Shown is an implementation where the active device and power supply bypass capacitors are assembled onto the resonator. The wirebond signal leads are kept as short as possible. In a typical application conductive epoxy would be used to attach the resonator to the circuit.



Thin Film - Self Bias Network


Description

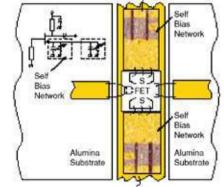
- Wireless communication modules
- MIC broadband high gain RF/Microwave module
- Bias line voltage divider and integrated decoupling capacitor
- Simplifies assembly with 1 component
- Improves gain flatness and stability in GaAs FET
- Miniature size: .020 x .034 (.5mm x .86mm)

Physical Characteristics

Equivalent Schematic Representation

Typical application requires 2 networks

Recommended Mounting: The self Bias Network should be mounted with fully metalized side down directly on the RF ground plane for best performance.


Part Number Identification

Physical Characteristics

Typical Application

Custom Networks can be designed per customer specification. Please consult factory for additional information or special requirements.

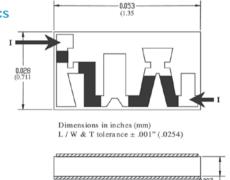
Thin Film - Bias Filter Network

Description

- Wireless communication modules Ideal varactor decoupling element High gain RF/Microwave modules
- Ideal GaAs FET gate biasing device MMIC multichip modules

Functional Applications

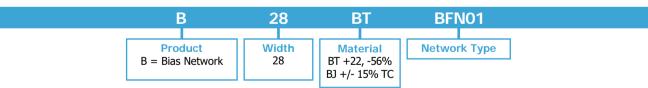
- Filters noise and RF from Supplies
- Reduces RF feedback through bias supplies
- Simplifies assembly one component replaces many
- Designed with large 4 mil wirebond pads for assembly ease

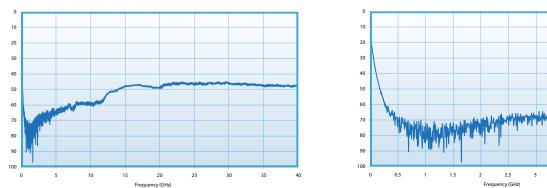


Equivalent Schematic Representation

Total Series Resistance: DC Rating: Volts Max: 50V Total Shunt Capacitance: I (ma) Max: 10Ma

Recommended Mounting: The Bias Filter Network should be mounted with fully metallized side down directly on RF ground plane for maximum isolation performance.


Physical Characteristics


Typical Application

Part Number Identification

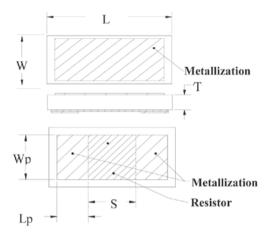
(0.17)

Isolation vs. Frequency

Custom Networks can be designed per customer specification. Please consult factory for additional information or special requirements.

4.5

4


3.5

Thin Film - Gain Equalizer

Description

- Equalizer compensates for module Gain Slope
- Broadband communications, radar, phased arrays
- SONET modules to 40+ GHz
- RADAR applications to >67 GHz
- Superior microwave performance
- Excellent repeatability
- Ease of assembly, reduced size and cost
- Designed with large 4 mil wirebond pads for assembly ease

Physical Characteristics

Mounting attachment material:

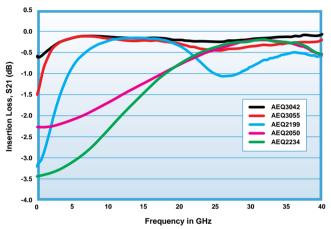
Epoxy or Solder

• Metallization - Epoxy mount:

Top: 100 μ inch Au min over 300 Angstroms TiW min. Bottom: 100 μ inch Au min over 300 Angstroms TiW min over TaN resistor

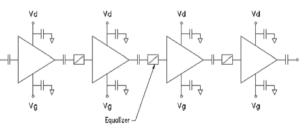

• Metallization - Solder mount:

Top side: 100 μ inch min. over 50 μ inch NiV min. over 300 Angstroms TiW min.


Bottom side: 25 μ inch min. over 50 μ inch NiV min. over 300 Angstroms TiW min. over TaN resistor

Die attachment recommendations:

The gap in the microstrip line should nominally be equal to dimension "S" (see equalizer outline on Page 64).


Performance

Excellent, repeatable microwave performance is achieved by application of precision thin film fabrication and DLI Hi-K Ceramic materials. DLI's unique design solution provides near Ideal R-C frequency response, far superior to "Stacked R-C chip" Assemblies.

Equivalent Schematic Representation

Typical Broadband Module for Fiber Optic SONET

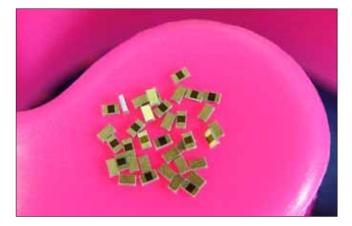
Part #	Resistor (R)	Low Frequency Insertion Loss, 50 ohm system (dB)	Equivalent Capacitance (pF)	F _o (GHz)	Mounting Attachment Material: S=solder E=epoxy	L	W	т
AEQ 2050	30 Ω	-2.2	0.33	34	E	0.030" ± .002" (.762 ± .051mm)	0.018" ± .002" (.457 ± .051mm)	0.005" ± .001" (.127 ± .025mm)
AEQ 2199	43 Ω	-3.0	1.15	16	E	0.028" ± .002" (.711 ± .051mm)	0.016" ± .002" (.406 ± .051mm)	0.007" ± .001" (.178 ± .025mm)
AEQ 2234	50 Ω	-3.5	0.31	32	E	0.032" ± .002" (.813 ± .051mm)	0.016" ± .002" (.406 ± .051mm)	0.005" ± .001" (.127 ± .025mm)
AEQ 3042	9 Ω	-0.8	12.5	7	S	0.040" ± .002" (1.02 ± .051mm)	0.020" ± .002" (.508 ± .051mm)	0.006" ± .001" (.152 ± .025mm)
AEQ 3055	20 Ω	-1.6	9.0	7	S	0.040" ± .002" (1.02 ± .051mm)	0.020" ± .002" (.508 ± .051mm)	0.006" ± .001" (.152 ± .025mm)

Thin Film - DC to 18 GHz EW Series Gain Equalizers

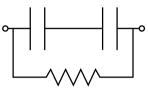
Description

DLI's Gain Equalizers are designed as a small, low cost solution to your gain slope challenges. DLI's EW Series is designed to address this issue from DC to 18 GHz in a package smaller than an 0302 capacitor. Components are designed for surface mount pick and place equipment or epoxy mount.

Available in tape and reel packaging for high volume applications.

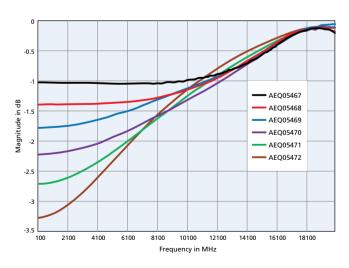

Applications

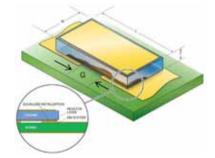
- Broadband Microwave Modules; EW, ECM, ECCM
- Equalizer is utilized as a compensation circuit to correct for loss slope created by other circuit elements such as amplifiers


Benefits

- Footprint interchangeable part series, gain slopes from 1 to 3.5 dB
- Superior, repeatable microwave performance
- Ease of assembly; terminations are compatible with solder SMT and conductive epoxy assembly
- Package optimized for typical 50 W transmission line width
- No ground connection required

Part Numbers - DC to 18 GHz EW Series Gain Equalizers

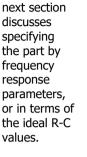

Equivalent Schematic Representation

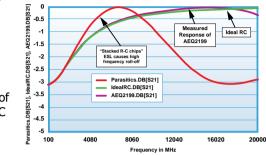

Part Number	L	W	т	Lp	Wp	G	Attach method	Nominal Slope
AEQ05467	28 ± 1	16 ± 1	7 ± 1	7 min.	14 ± 1	10	Solder/Epoxy	1.0 dB
AEQ05468	28 ± 1	16 ± 1	7 ± 1	7 min.	14 ± 1	10	Solder/Epoxy	1.5 dB
AEQ05469	28 ± 1	16 ± 1	7 ± 1	7 min.	14 ± 1	10	Solder/Epoxy	2.0 dB
AEQ05470	28 ± 1	16 ± 1	7 ± 1	7 min.	14 ± 1	10	Solder/Epoxy	2.5 dB
AEQ05471	28 ± 1	16 ± 1	7 ± 1	7 min.	14 ± 1	10	Solder/Epoxy	3.0 dB
AEQ05472	28 ± 1	16 ± 1	7 ± 1	7 min.	14 ± 1	10	Solder/Epoxy	3.5 dB

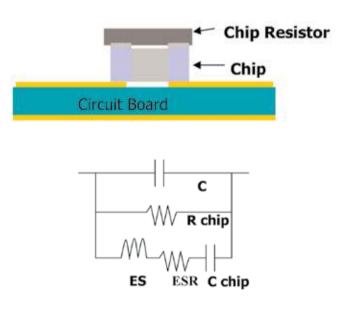
All dimensions in mils

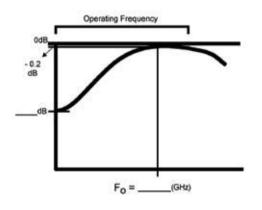
Typical Performance

Die Attach Recommendations


- 1) Equalizer width should be approximately as wide as 50 Ω line trace on PCB.
- 2) The gap in the microstrip line should be nominally equal to dimension G.
- Vacuum pick-up tool recommended for component handling. If pressure is to be applied during component placement, it should be done uniformly across the part.
- Thin, unmounted circuit boards are prone to warpage during reflow. This can cause solder attach defects and cracking of components during handling or subsequent housing installation.



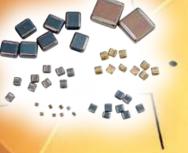

Thin Film - Gain Equalizer


DLI's miniature Thin Film Gain Equalizers have a microwave frequency response which is so close to ideal that it can be modeled by the simple parallel R-C circuit shown below. This is a convenient model for Spice (time domain) simulations. Other common equalizer implementations using stacked R-C chips are not accurately modeled by this circuit. For highest accuracy frequency domain simulations, S-parameters are recommended.

The "stacked R-C chip" implementation, illustrated in the figure below has many issues in both design and manufacturing which lead to lower performance and higher product cost. The equivalent circuit model below more accurately predicts the frequency response of the stacked chips. At microwave frequencies, the additional parasitic circuit elements are required. The effect of ESL, the equivalent inductance of the chip capacitor is particularly important as it causes a more peaked response as seen in the graph (right). DLI's gain equalizer frequency response is compared with that of an ideal R-C, and stacked R-C chips in the figure below. The stacked R-C chip model utilizes the same Rchip and Cchip values as in the ideal R-C model. The key point is that the chip component R and C values used in a stacked chip equalizer are generally not the ideal values for specifying the DLI single chip gain equalizer. The

Custom Equalizer Design Inputs:

- Low frequency loss or resistance value
- F_o minimum loss frequency or capacitance determined using equivalent circuit model on Page 64
- Case size restrictions 50 ohm microstrip line width is a typical maximum case width objective


Case Size (inches)	Preferred:	Maximum Length:	Maximum Width
Minimum Loss Frequency (GHz)	F _o GHz		
Low Frequency Loss (dB), 50 ohm system	Design Resistance (ohms): Loss(dB): _	
Operating Temperature Range (C°)	Minimum Temperat	ure: Maximum Temp	erature:
Power Dissipation (mw)			
Assembly Method (SMT or Epoxy)	Conductive Epoxy a	ttach: Solder attach	: Solder type:
Board Material	Material:	Dielectric constant:	_ Thickness:

What makes DLI BTP services unique?

Dielectric Laboratories, Inc. (DLI) has built its reputation as a manufacturer of High frequency, High Q Capacitors

and is your global partner for application specific microwave and millimeterwave components serving customers in fiber optic wireless, medical, transportation, set

transportation, semiconductor, space, avionics and military markets.

The marriage of ceramic expertise, manufacturing know-

how, product quality, customer service, product customization, and clever microwave and RF design engineering sets us apart from all others in the industry.

With over three decades of material science formulation and development, more than

one hundred proprietary and/or patented ceramic formulations, and multiple recent patent filings, DLI is the pre-eminent ceramic component manufacturer in the industry. You can turn to DLI with confidence for your

high frequency Single-Layer Capacitors, Multi-Layer Capacitors that are difficult to build and tight tolerance; Heat Sinks, Resonators, Filters, and Build-To-Print or Custom Thin Film Components.

Typical Applications

- Heat Sinks and Standoff
- Integrated Passive Components
- Custom Resistor Capacitor Networks
- Lange Couplers, Power Combiners
- EMI Filters
- High Frequency Filters
- Microwave Integrated Circuits (MIC)
- Bias Decoupling and Filtering
- Lumped Element Impedance Matching Network
- PA Stabilization
- Impedance Matching and Power Combining Network

Build-to-Print Reference Guide

Metal Coatings

- Gold (Au) Nickel (Ni) Titanium Tungsten (TiW) Platinum (Pt)
- Titanium (Ti)
 Copper (Cu)
 Nickel Vanadium (NiV)
 Gold Tin (AuSn)
 Tantalum Nitride (TaN) (Resistive Layer)

Lithography

 Conductor Thickness
 Line width and Spacing

 Gold $\leq 150 \ \mu''$ $\leq 0.5 \pm 0.1 \ mil$

 Gold $150 - 300 \ \mu''$ $1.0 \pm 0.2 \ mil$

 Copper 50 - 600 \ \mu''
 $3.0 \pm 0.4 \ mil$

 Nickel 50 - 125 \ \mu''
 $3.0 \pm 0.4 \ mil$

Laser Drilling

Features as small as 0.003" dia.
Drill features in high K dielectrics

Other Options

- Edge-wrap Metallization
 Castelated Vias
 Gold Filled Vias
- Reinforced Vias
 Spiral Inductors
 Interdigitated Capacitors
- Lange Coupler Resistors Notched, Flush, Top-Hat Polyimide
- Solder Dam
 RF test capabilities up to 67 GHz
 Contoured Surfaces (non-rectangular shapes)
- Contoured Surfaces (non-rectangular snapes)
 Selective Metallization Different top and bottom substrate metal scheme. Different metal schemes on the same side of substrate
 Packaging Photon Ring packaging, repopulation, Tape and Reel Anti-Static Waffle packaging up to 4" square

TF Coupon

Resistors can be incorporated directly into the circuit design with the advantage of reducing assembly steps, improving thermal dissipation and improving reliability through the reduction of interconnections.

DLI's resistor technology utilizes TaN. This material has higher maximum exposure temperature and superior resistance to harsh environments (soldering and processing).

Under most circumstances DLI can tune a resistor in to tolerance of 10% without trimming. When tighter tolerance is required laser trimming is available.

DLI offers reinforced vias when higher current is required which gives better mechanical strength and lower resistance to the via hole.

Filled vias provide improved performance and reliability over plated vias but have a higher processing cost. Filled vias increase current carrying capacity and have higher thermal conductivity to the ground plane. When mounting active die, use of filled vias effectively conducts heat away from the die.

DLI offers gold fill (copper or silver can diffuse into other layers of the metallization leading to reliability issues).

The precision of conductor line width and line spacing can be critical to achieving the performance required. Control of metal geometries is key to repeatable performance in microwave structures. Characteristic impedance of transmission lines is governed by line widths. DLI has extensive experience and can assist in tailoring ceramic/ metallization systems to your design to achieve maximum performance. DLI is capable of meeting as small as 0.0005" line width and spacing with 0.0001" tolerance.

CUSTOMER DESIGNED FILTERS

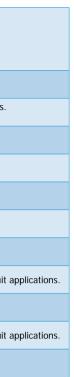
DLI is a premier manufacturer of custom designed thin film filters. DLI combines its RF design knowledge. testing capabilities, materials characterization expertise with our precision manufacturing capabilities to provide our customers with repeatable designs. Customers may provide designs on 99.6% alumina or are free to design filters using DLI's high K, high Q, temperature stable dielectrics to receive a smaller, lighter and higher performing filter. We can deliver these filters tested with known good yield. .

Ż

DLI has the capability to manufacture custom designs utilizing Polyimide materials to extend low frequency while miniaturizing overall size.

DLI also has the RF expertise to model high performance filters to your specific needs including multi-layer technology. Please see DLI's Custom Thin Film Product Line Catalog.

Build-to-Print or Build-to-Performance - You make the Choice!


	Substrate Material	Dielectric Constant (Tolerance)	Typical Loss Tangent	Coefficient of Thermal Expansion (ppm/°K)	Temperature Coefficient of Capacitance (ppm/°C)	Surface Finish (µ-inch)	Application	
	Fused Quartz (SiO2) QZ	3.82 @ 1MHz	0.000015 @ 1MHz 0.00033 @ 24GHz	0.55	-	<0.1	Suitable for microwave and millimeter wave frequency applications. Low los Thermal Conductivity: 1.38 W/m-K.	SS.
	Aluminum Nitride (AIN) AG	8.6 (±0.35) @ 1MHz	0.005 @ 8GHz	4.6	_	As Fired <20 Polished <2	Suitable for circuits requiring high power dissipation. RF and microwave circ Thermal Conductivity: 170 W/m-K or 200 W/m-K	cuit applications.
	96% Alumina (Al2O3) PJ	9.5 (±1) @ 1MHz	0.0004	6.4 - 8.2	-	As Fired <4 Polished <1	General circ uit applications. Compatible with Si and GaAs chip technology. Thermal Conductivity: 26 W/m-K.	
	99.6% Alumina (Al2O3) PI	9.9 (±0.15) @1MHz	0.0001	6.5 - 7.5	P120 ± 30	As Fired ≤3 Polished <5	General circuit applications. Compatible with Si and GaAs chip technology. Thermal Conductivity: 27 W/m-K.	
	PG	13.3 (±0.5)	0.0005	7.6	P22 ± 30	Polished <5	Replacement for Alumina - improved temperature stability.	
_	АН	20 (±0.5)	0.0002	9.6	P90 ± 20	Polished <5	Suitable for circuit miniaturization. RF and microwave circuit applications.	
	NA	23 (±0.5)	0.0003	10.1	N30 ± 15	Polished <5	Suitable for circuit miniaturization. RF and microwave circuit applications.	
-	CF	25 (±0.5)	0.0003	9.0	0 ± 15	Polished <5	Excellent temperature stability. Suitable for circuit miniaturization. RF and n	nicrowave circuit a
	CD	38 (±1)	0.0005	5.8	N20 ± 15	Polished <5	Suitable for circuit miniaturization. RF and microwave circuit applications.	
	CG	67 (±1)	0.0009	9.0	0 ± 30	Polished <5 Lapped <20	Excellent temperature stability. Suitable for circuit miniaturization. RF and n	nicrowave circuit a
	NP	85 (±5%)	0.0003	-	N750 ± 200	Polished <5		
	NR	152 (±5%)	0.0006	10.0	N1500 ± 500	Polished <5	Suitable for circuit miniaturization. RF and microwave circuit applications.	
	NS	300 (±10%)	0.005	_	N2400 ± 500	Polished <5	Microwave power transistor matching; eg. GaN, SiC	
	NU	600 (±10%)	0.015	-	N3700 ± 1000	Polished <5		
_	NU	600 (±10%)	0.015	-	N3700 ± 1000	Polished <5		
-	•		0.015				Commente	Maximum U
-	Metalization System	600 (±10%)	0.015	Component Attach		Typical Thickness Range	Comments	Maximum U Temperatur
	•		tal System for				Comments Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 µ" for Solder Attach.	
	Metalization System Tantalum Nitride (TaN) Titanium Tungsten (TiW)	Application Standard Thin Film Me	tal System for or Layer	Component Attachi Au/Sn, Au/Si,	ment Method	Typical Thickness Range TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å	Not recommended for Tin/Lead Solder Attach -	Temperatur
	Metalization System Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Titanium Tungsten (TiW)	Application Standard Thin Film Me Conductors with Resist Standard Thin Film Me	tal System for or Layer tal System for	Component Attachi Au/Sn, Au/Si, Au/Ge - Eutectic, Epoxy Au/Sn, Au/Si,	ment Method Epoxy	Typical Thickness Range TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å	Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 μ" for Solder Attach. Compatible with Wire bonding -	Temperatur 38 42
	Metalization System Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Copper (Cu) Nickel (Ni)	Application Standard Thin Film Me Conductors with Resist Standard Thin Film Me Conductors High Current & Low Lo	tal System for or Layer tal System for rss with or without	Component Attachi Au/Sn, Au/Si, Au/Ge - Eutectic, Epoxy Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb, Au/Sn, Au/Si,	ment Method	TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 10 μ" Cu:150 to 600 μ" NiV: 40 to 100 μ"	Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 μ" for Solder Attach. Compatible with Wire bonding - Maintain Gold ≥100 μ" for Wire bonding. Compatible with Tin/Lead Solder Attach - Maintain exposed surface Gold 5-20 μ" for Sn/Pb Solder Attach when	Temperatur 380 420 350
	Metalization System Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Copper (Cu) Nickel (Ni) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Nickel (Ni)	Application Standard Thin Film Me Conductors with Resist Standard Thin Film Me Conductors High Current & Low Lo TaN Resistor Layer High Current & Low Lo	tal System for or Layer tal System for ess with or without ess with or without	Component Attachi Au/Sn, Au/Si, Au/Ge - Eutectic, Epoxy Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb, Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb,	ment Method	Tan: 12 to 200 Ω / □ TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 10 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 10 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 100 μ" NiV: 40 to 100 μ" Au: 5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ"	Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 μ" for Solder Attach. Compatible with Wire bonding - Maintain Gold ≥100 μ" for Wire bonding. Compatible with Tin/Lead Solder Attach - Maintain exposed surface Gold 5-20 μ" for Sn/Pb Solder Attach when repeated soldering is required for repairs. Compatible with Wire bonding	Temperatur 380
	Metalization System Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Titanium Tungsten (TiW) Gold (Au) Tintalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Copper (Cu) Nickel (Ni) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Nickel (Ni) Gold (Au) Nickel (Ni) Nickel (Ni)	Application Standard Thin Film Me Conductors with Resist Standard Thin Film Me Conductors High Current & Low Lo TaN Resistor Layer High Current & Low Lo TaN Resistor Layer High Current & Low Lo TaN Resistor Layer With or without TaN Reselective Gold/Tin atta	tal System for or Layer tal System for ass with or without ass with or without essistor Layer for ch and wire bond	Component Attachi Au/Sn, Au/Si, Au/Ge - Eutectic, Epoxy Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb, Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb,	ment Method	Tan: 12 to 200 Ω / □ TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 10 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 10 μ" Cu:150 to 600 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 70 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 70 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 70 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 70 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 10 μ" NiV: 40 to 100 μ" Au: 5 to 10 μ"	Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 μ" for Solder Attach. Compatible with Wire bonding - Maintain Gold ≥100 μ" for Wire bonding. Compatible with Tin/Lead Solder Attach - Maintain exposed surface Gold 5-20 μ" for Sn/Pb Solder Attach when repeated soldering is required for repairs. Compatible with Wire bonding - Maintain Gold ≥100 μ" for Wire bonding. Eliminates solder preform.	Temperatur 380 421 350 350 350
	Metalization System Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Titanium Tungsten (TiW) Gold (Au) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Copper (Cu) Nickel (Ni) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Nickel (Ni) Gold (Au) Tantalum Nitride (TaN) Titanium Tungsten (TiW) Gold (Au) Nickel (Ni) Gold Tin (AuSn) Titanium Tungsten (TiW) Nickel (Ni)	Application Standard Thin Film Me Conductors with Resist Standard Thin Film Me Conductors High Current & Low Low TaN Resistor Layer High Current & Low Low TaN Resistor Layer With or without TaN Reselective Gold/Tin attaclocations For Gold/Tin Solder Sy	tal System for or Layer tal System for ass with or without ass with or without essistor Layer for ch and wire bond	Component Attachi Au/Sn, Au/Si, Au/Ge - Eutectic, Epoxy Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb, Au/Ge - Eutectic, Sn/Pb, Au/Sn, Au/Si, Au/Ge - Eutectic, Sn/Pb, Au/Sn	ment Method Epoxy Epoxy Epoxy Image: Sepoxy Image: Sepoxy <td>Typical Thickness Range TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 10 μ" Cu:150 to 600 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" NiV: 40 to 100 μ" Au:5 to 70 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 10 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TiW: 300 to 500 Å Au:5 to 300 μ" TiW: 300 to 500 Å Au:5 to 300 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TiW: 300 to 500 Å Au:5 to 300 μ" TiW: 300 to 500 Å NiV: 4</td> <td>Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 μ'' for Solder Attach. Compatible with Wire bonding - Maintain Gold $\geq 100 \mu''$ for Wire bonding. Compatible with Tin/Lead Solder Attach - Maintain exposed surface Gold 5-20 μ'' for Sn/Pb Solder Attach when repeated soldering is required for repairs. Compatible with Wire bonding - Maintain Gold $\geq 100 \mu''$ for Wire bonding. Eliminates solder preform. Direct die attach to pad (Au/Sn).</td> <td>Temperatur 380 421 350 350 280</td>	Typical Thickness Range TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TiW: 300 to 500 Å Au: 5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au: 5 to 10 μ" Cu:150 to 600 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 300 μ" NiV: 40 to 100 μ" Au:5 to 70 μ" TaN: 12 to 200 Ω / □ TiW: 300 to 500 Å Au:5 to 10 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TiW: 300 to 500 Å Au:5 to 300 μ" TiW: 300 to 500 Å Au:5 to 300 μ" NiV: 40 to 100 μ" Au:5 to 300 μ" TiW: 300 to 500 Å Au:5 to 300 μ" TiW: 300 to 500 Å NiV: 4	Not recommended for Tin/Lead Solder Attach - Maintain Gold 5-20 μ'' for Solder Attach. Compatible with Wire bonding - Maintain Gold $\geq 100 \mu''$ for Wire bonding. Compatible with Tin/Lead Solder Attach - Maintain exposed surface Gold 5-20 μ'' for Sn/Pb Solder Attach when repeated soldering is required for repairs. Compatible with Wire bonding - Maintain Gold $\geq 100 \mu''$ for Wire bonding. Eliminates solder preform. Direct die attach to pad (Au/Sn).	Temperatur 380 421 350 350 280

Note: Titanium can be substituted depending on substrate composition. Custom Metalizations and thicknesses are available upon request. Nickel Vanadium may be substituted for Nickel in some applications; contact applications engineering for details.

1

-

•

Standard substrate thicknesses are in 5 and 10mil thick to 0.1mil. Polished and lapped tolerance where As-Fired Alternative surface finishes may

the following requirements: current carrying requirement, requirements and if utilizing an integrated resistor.

Higher current requirements can employ thicker gold or copper for fine line geometries. Wire bonding to the surface of a circuit generally requires 100 μ " of gold. DLI also has the capability to selectively apply gold/tin solder

Note: For lower frequency filter (<4 GHz) designs, DLI suggests using a minimum gold thickness of 150µ". Higher frequency designs should use the standard $100\mu''$ gold thickness.

Knowles Capacitors designs, manufactures and sells special electronic components. Our products are used in military, space, telecom infrastructure, medical and industrial applications where function and reliability are crucial.

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 KCCSales@knowles.com

Knowles (Valencia) 25111 Anza Drive, Valencia, CA 91355 USA

Phone: +1 661 295 5920 Fax: +1 661 295 5928 NovacapSales@knowles.com

Knowles (UK) Ltd Hethel Engineering Centre, Chapman Way, Hethel, Norwich, Norfolk NR14 8FB

Phone: +44 1603 723300 Fax: +44 1603 723301 SyferSales@knowles.com

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 VoltronicsSales@knowles.com