Fiber Optic Components GaAs 850 nm VCSEL

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating
Storage Temperature	-40 to +100 °C
Operating Temperature	0 to +70 °C
Lead Solder Temperature	260 °C, 10 sec.
Laser Continuous Forward Current, Heat Sinked	15 mA
Laser Reverse Breakdown Voltage (I_R =10 μ A)	5 V @ 10 μA

ELECTRO-OPTICAL CHARACTERISTICS (T_A=25 °C unless otherwise stated)

VCSEL Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Peak Operating Current	Adjustable to establish operating power	I _{peak}		12	20	mA	1
Optical Power Output	I _F =12mA	Po	0.9	1.8	3.6	mW	1
Threshold Current		I _{TH}	1.5	3.5	6	mA	
Threshold Current Temperature Variation	$T_A = 0^{\circ}C$ to $70^{\circ}C$	$\Delta \ {\rm I}_{\rm TH}$	-1.5		1.5	mA	2
Slope Efficiency	Po =1.3mW	η	0.1	0.25	0.4	mW/mA	3
Slope Efficiency Temperature variation	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Δη /ΔΤ		-0.5		%/°C	
Peak Wavelength	I _F =12mA	λ_{P}	830	850	860	nm	
λ_P Temperature Variation	I _F =12mA	$\Delta\lambda_{P/}\Delta T$		0.06		nm/⁰C	
Spectral Bandwidth, RMS	I _F =12mA	Δλ			0.85	nm	
Laser Forward Voltage	I _F =12 mA	V _F	1.6	1.8	2.2	V	
Laser Reverse Voltage	I _R =10 μA	BVR_{LD}	5	10		V	
Rise and Fall Times	Prebias Above Threshold, 20%-80%	t _r /t _f		100	300	ps	4
Relative Intensity Noise	1 GHz BW, I _F =12mA	RIN		-128	-122	dB/Hz	
Series Resistance	I _F =12 mA	Rs	18	25	40	Ohms	
Beam Divergence	I _F =12 mA	θ	5	15	20	Degrees	5

Notes:

- 1. Operating power is set by the peak operating current $I_{PEAK}=I_{BIAS}+I_{MODULATION}$.
- 2. Operation at temperatures outside the specified range may result in the threshold current exceeding the maximums defined in the electro-optical characteristics table.
- 3. Slope efficiency is defined as $\Delta Po/\Delta IF$ at a total power output of 1.3 mW.
- 4. Rise and fall times are sensitive to drive electronics, 200ps rise and fall times are achievable with Honeywell VCSELs.
- 5. Beam divergence is defined as the total included angle between the $1/e^2$ intensity points.