

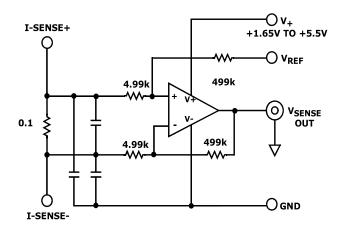
NOT RECOMMENDED FOR NEW DESIGNS
RECOMMENDED REPLACEMENT PART

Dual Micropower, Zero-Drift, RRIO Operational Amplifiers

ISL28233I

The ISL28233IUZ is a dual micropower, zero-drift operational amplifier that is optimized for single and dual supply operation from 1.65V to 5.5V and $\pm 0.825V$ to $\pm 2.75V$. The low supply current of $18\mu A$ and wide input range enable the ISL28233IUZ to be an excellent general purpose op amp for a range of applications. The ISL28233IUZ is ideal for handheld devices that operate off 2 AA or single Li-ion batteries.

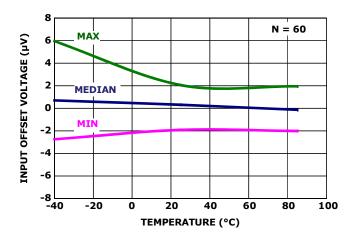
The ISL28233IUZ is available in an industry standard pinout 8 Ld MSOP package. It operates over the temperature range of -40°C to +85°C.


Features

• Low Input Offset Voltage 8μV, Max.
• Low Offset Drift 0.06μV/°C, Max
• Quiescent Current (Per Amplifier)18µA, Typ.
• Single Supply Range +1.65V to +5.5V
• Dual Supply Range ±0.825V to ±2.75V
• Low Noise (0.01Hz to 10Hz)1.1 μ V _{P-P} , Typ.
 Rail-to-Rail Inputs and Output
• Input Bias Current 110pA, Max.
• Operating Temperature Range40°C to +85°C

Applications

- Bi-Directional Current Sense
- Temperature Measurement
- Medical Equipment
- Electronic Weigh Scales
- Precision/Strain Gauge Sensor
- Precision Regulation
- · Low Ohmic Current Sense
- High Gain Analog Front Ends

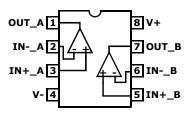

Typical Application

BI-DIRECTIONAL CURRENT SENSE AMPLIFIER

1

VOS VS TEMP

Ordering Information


PART NUMBER (Note 3)	PART MARKING	PACKAGE (Pb-Free)	PKG. DWG. #
ISL28233IUZ (Note 2)	8233Z	8 Ld MSOP	M8.118A
ISL28233IUZ-T7 (Notes 1, 2)	8233Z	8 Ld MSOP M8.118A	

NOTES:

- 1. Please refer to TB347 for details on reel specifications.
- 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL282331. For more information on MSL please see techbrief IB363.

Pin Configurations

ISL28233IUZ (8 LD MSOP) TOP VIEW

Pin Descriptions

ISL28233IUZ (8 Ld MSOP)	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
3	IN+_A	Non-inverting input	Vi.
5	IN+_B		□
	IN+_C		IN+
	IN+_D		IN- CLOCK GEN + DRIVERS
			Circuit 1
4	V-	Negative supply	
2	INA	Inverting input	(See Circuit 1)
6	INB		
	INC		
	IND		
1	OUT_A	Output	V+
7	OUT_B		··· -
	OUT_C		□оит
	OUT_D		···••
			Circuit 2
8	V+	Positive supply	

Absolute Maximum Ratings

Max Supply Voltage V+ to V
ESD Tolerance Human Body Model

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
8 Ld MSOP (Notes 4, 5)	. 180	65
Maximum Storage Temperature Rang		C to +150°C
Pb-Free Reflow Profile		ee link below
http://www.intersil.com/pbfree/Pb-	-FreeReflow.	<u>asp</u>

Operating Conditions

Temperature Range.	 -40°C to +85°C
remperature manger	 10 0 10 105 0

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
- 5. For θ_{JC} , the "case temp" location is taken at the package top center.

Electrical Specifications

 $V_+=5$ V, $V_-=0$ V, VCM = 2.5V, $T_A=+25$ °C, $R_L=10$ k Ω , unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
DC SPECIFICATI	ONS			ļ.		
V _{OS}	Input Offset Voltage		-8	±2	8	μV
			-11.9	-	11.9	μV
TCV _{OS}	Input Offset Voltage Temperature Coefficient		-0.06	0.02	0.06	μV/°C
I _{OS}	Input Offset Current		-	1	-	pА
TCI _{OS}	Input Offset Current Temperature Coefficient		-	0.11	-	pA/°C
I _B	Input Bias Current		-110	±30	110	pА
			-110	-	110	pА
TCIB	Input Bias Current Temperature Coefficient		-	0.49	-	pA/°C
Common Mode Input Voltage Range		V+ = 5.0V, V- = GND	-0.1	-	5.1	V
CMRR	Common Mode Rejection Ratio	VCM = -0.1V to 5.1V	118	125	-	dB
			115		-	dB
PSRR	Power Supply Rejection Ratio	Vs = 1.65V to 5.5V	110	138	-	dB
			110		-	dB
V _{OH}	Output Voltage Swing, High	$R_L = 10k\Omega$	4.965	4.981	-	V
V _{OL}	Output Voltage Swing, Low			18	35	mV
A _{OL}	Open Loop Gain	$R_L = 1M\Omega$		174	-	dB
V ₊	Supply Voltage	Guaranteed by PSRR	1.65	-	5.5	V
IS	Supply Current, Per Amplifier	$R_L = OPEN$	-	18	25	μΑ
			-	-	35	μΑ
I _{SC+}	Output Source Short Circuit Current	R_L = Short to ground or V+	13	17	26	mA
I _{SC-}	Output Sink Short Circuit Current		-26	-19	-13	mA

ISL28233I

Electrical Specifications

 $V_+=5V$, $V_-=0V$, VCM = 2.5V, $T_A=+25^{\circ}C$, $R_L=10k\Omega$, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
AC SPECIFICATION	ONS					
GBWP	Gain Bandwidth Product f = 50kHz	$\begin{aligned} & A_V = 100, R_F = 100 k\Omega, \\ & R_G = 1 k\Omega, R_L = 10 k\Omega to V_{CM} \end{aligned}$	-	400	-	kHz
e _N V _{P-P}	Peak-to-Peak Input Noise Voltage	f = 0.01Hz to 10Hz	-	1.1	-	µV _{P-P}
e _N	Input Noise Voltage Density	f = 1kHz	-	65	-	nV/√(Hz)
i _N	Input Noise Current Density	f = 1kHz	-	72	-	fA/√(Hz)
		f = 10Hz	-	79	-	fA/√(Hz)
C _{in}	Differential Input Capacitance	f = 1MHz	-	1.6	-	pF
Common Mode Input Capacita			-	1.12	-	pF
TRANSIENT RESE	PONSE		1		-	1
SR	Positive Slew Rate	V_{OUT} = 1V to 4V, R_L = 10k Ω	-	0.2	-	V/µs
	Negative Slew Rate		-	0.1	-	V/µs
t _r , t _f , Small Signal	Rise Time, t _r 10% to 90%	$A_V = +1, V_{OUT} = 0.1V_{P-P},$	-	1.1	-	μs
	Fall Time, t _f 10% to 90%	$R_F = 0\Omega, R_L = 10k\Omega,$ $C_L = 1.2pF$	-	1.1	-	μs
t _n , t _f Large Signal	Rise Time, t _r 10% to 90%	$A_V = +1, V_{OUT} = 2V_{P-P},$	-	8	-	μs
	Fall Time, t _f 10% to 90%	$R_F = 0\Omega, R_L = 10k\Omega,$ $C_L = 1.2pF$	-	10	-	μs
t _s	Settling Time to 0.1%, 2V _{P-P} Step	$A_V = +1, R_F = 0\Omega,$ $R_L = 10k\Omega, C_L = 1.2pF$	-	35	-	μs
^t recover	Output Overload Recovery Time, Recovery to 90% of output saturation	$A_V = +2$, $R_F = 10k\Omega$, $R_L = Open$, $C_L = 3.7pF$	-	10.5	-	μs

NOTE:

^{6.} Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

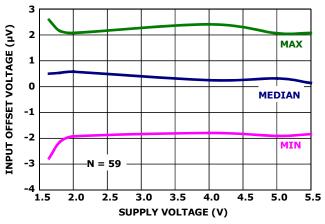


FIGURE 1. INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE

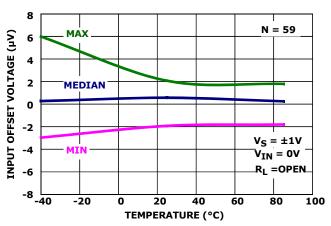


FIGURE 2. VOS vs TEMPERATURE

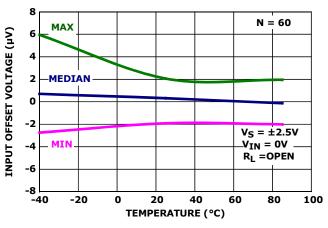


FIGURE 3. VOS vs TEMPERATURE

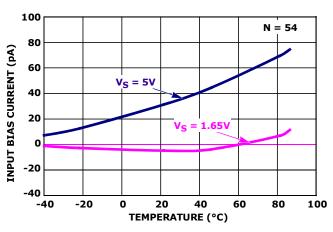


FIGURE 4. MEDIAN I_{B+} vs TEMPERATURE

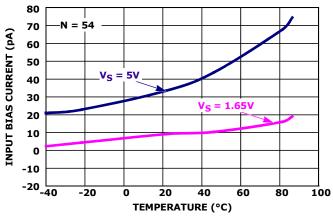


FIGURE 5. MEDIAN I_{B-} vs TEMPERATURE

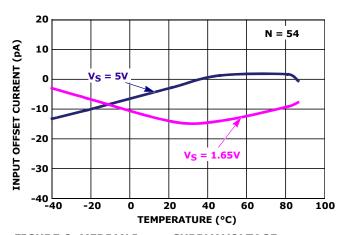


FIGURE 6. MEDIAN $I_{\mbox{OS}}$ vs SUPPLY VOLTAGE vs TEMPERATURE

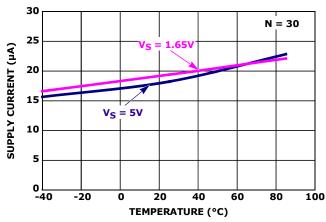


FIGURE 7. MEDIAN SUPPLY CURRENT vs TEMPERATURE vs SUPPLY VOLTAGE

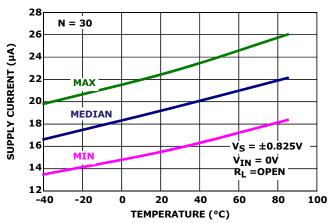


FIGURE 8. SUPPLY CURRENT vs TEMPERATURE

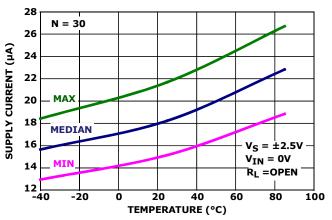


FIGURE 9. SUPPLY CURRENT vs TEMPERATURE

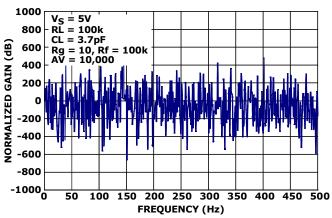


FIGURE 10. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz

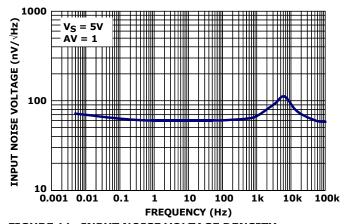


FIGURE 11. INPUT NOISE VOLTAGE DENSITY vs FREQUENCY

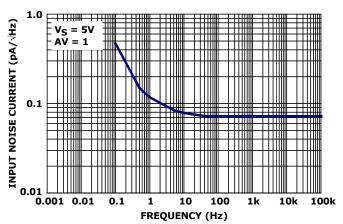


FIGURE 12. INPUT NOISE CURRENT DENSITY vs FREQUENCY

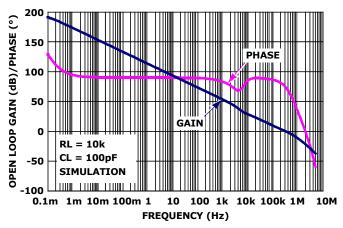


FIGURE 13. FREQUENCY RESPONSE vs OPEN LOOP GAIN, $R_L = 10k\Omega$

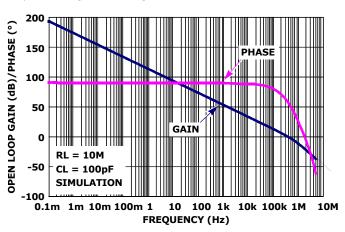


FIGURE 14. FREQUENCY RESPONSE vs OPEN LOOP GAIN, $R_L = 10 M\Omega$

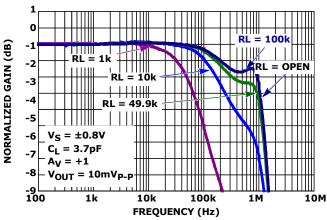


FIGURE 15. GAIN vs FREQUENCY vs R_L , $V_S = \pm 0.8V$

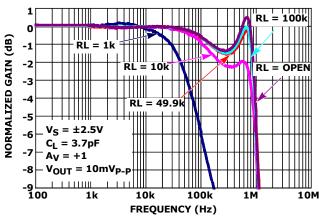


FIGURE 16. GAIN vs FREQUENCY vs R_L , $V_S = \pm 2.5V$

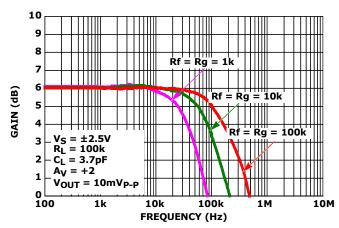


FIGURE 17. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES R_f/R_α

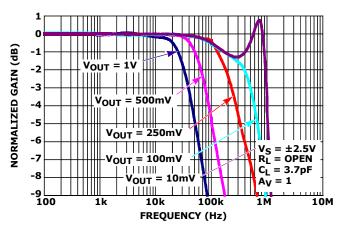


FIGURE 18. GAIN vs FREQUENCY vs V_{OUT} , $R_L = OPEN$

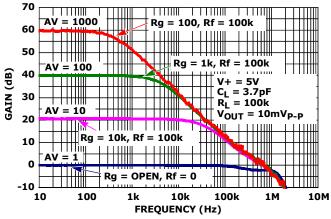


FIGURE 19. FREQUENCY RESPONSE vs CLOSED LOOP
GAIN

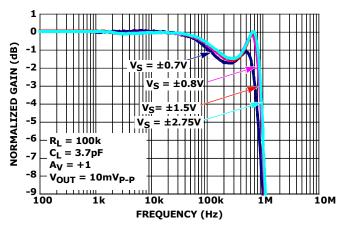


FIGURE 20. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

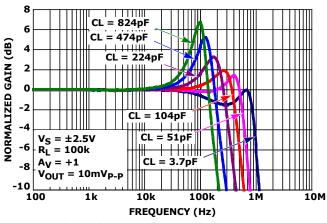


FIGURE 21. GAIN vs FREQUENCY vs C₁

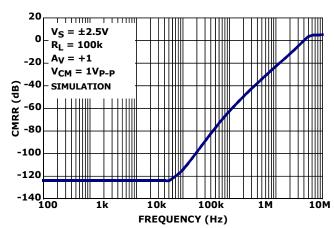


FIGURE 22. CMRR vs FREQUENCY, $V_S = \pm 2.5V$

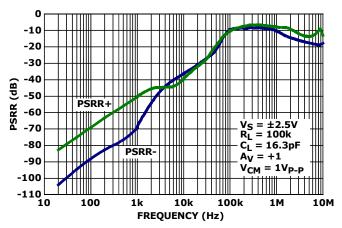


FIGURE 23. PSRR vs FREQUENCY, $V_S = \pm 2.5V$

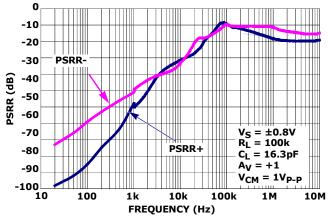


FIGURE 24. PSRR vs FREQUENCY, $V_S = \pm 0.8V$

FIGURE 25. CMRR vs TEMPERATURE

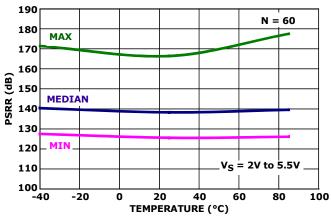


FIGURE 26. PSRR vs TEMPERATURE

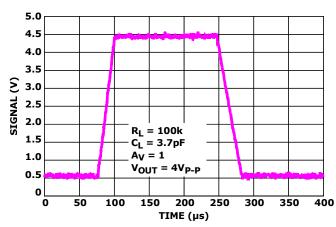


FIGURE 27. LARGE SIGNAL STEP RESPONSE (4V)

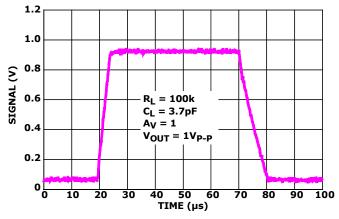


FIGURE 28. LARGE SIGNAL STEP RESPONSE (1V)

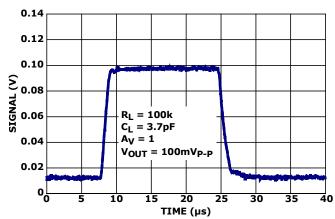


FIGURE 29. SMALL SIGNAL STEP RESPONSE (100mV)

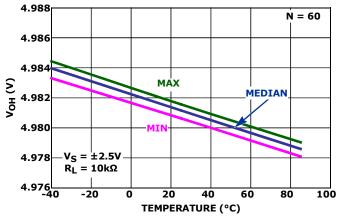


FIGURE 30. V_{OH} vs TEMPERATURE

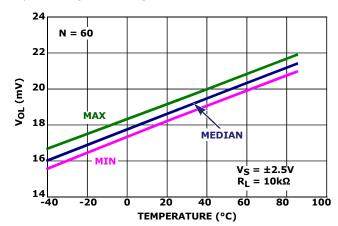


FIGURE 31. V_{OL} vs TEMPERATURE

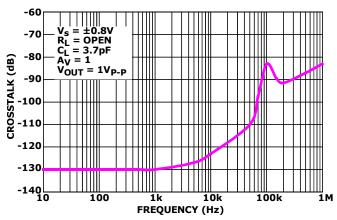


FIGURE 32. CROSSTALK vs FREQUENCY, $V_S = \pm 0.8V$

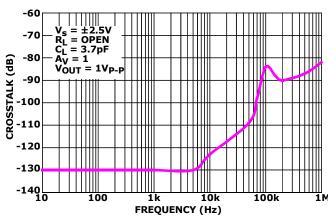


FIGURE 33. CROSSTALK vs FREQUENCY, $V_S = \pm 2.5V$

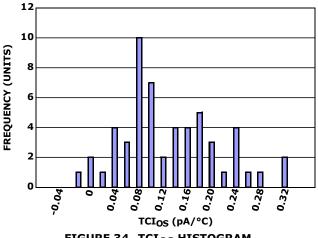
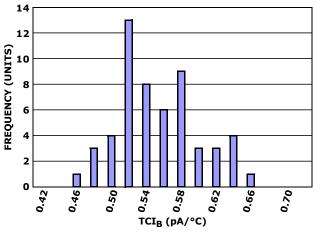
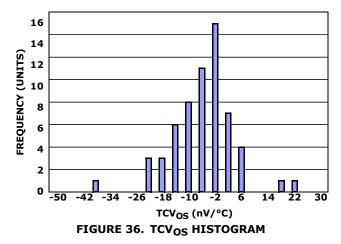
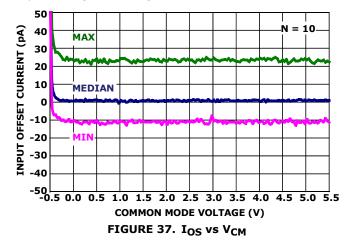
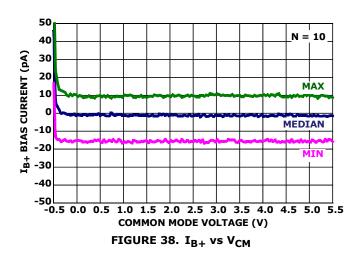
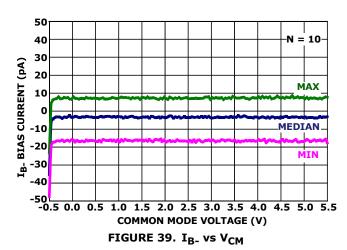
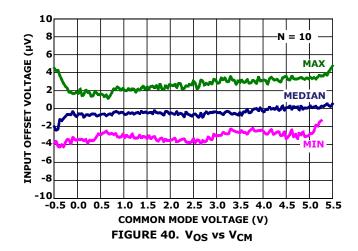


FIGURE 34. TCIOS HISTOGRAM


FIGURE 35. TCIb HISTOGRAM

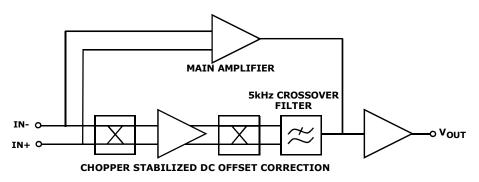


FIGURE 41. ISL28233IUZ FUNCTIONAL BLOCK DIAGRAM

Applications Information

Functional Description

The ISL28233IUZ uses a proprietary chopper-stabilized technique (see Figure 41) that combines a 400kHz main amplifier with a very high open loop gain (174dB) chopper amplifier to achieve very low offset voltage and drift (2μV, 0.02μV/°C typical) while consuming only 18μA of supply current per channel.

This multi-path amplifier architecture contains a time continuous main amplifier whose input DC offset is corrected by a parallel-connected, high gain chopper stabilized DC correction amplifier operating at 100kHz. From DC to ~5kHz, both amplifiers are active with DC offset correction and most of the low frequency gain is provided by the chopper amplifier. A 5kHz crossover filter cuts off the low frequency amplifier path leaving the main amplifier active out to the 400kHz gain-bandwidth product of the device.

The key benefits of this architecture for precision applications are very high open loop gain, very low DC offset, and low 1/f noise. The noise is virtually flat across the frequency range from a few millihertz out to 100kHz, except for the narrow noise peak at the amplifier crossover frequency (5kHz).

Rail-to-rail Input and Output (RRIO)

The RRIO CMOS amplifier uses parallel input PMOS and NMOS that enable the inputs to swing 100mV beyond either supply rail. The inverting and non-inverting inputs do not have back-to-back input clamp diodes and are capable of maintaining high input impedance at high differential input voltages. This is effective in eliminating output distortion caused by high slew-rate input signals.

The output stage uses common source connected PMOS and NMOS devices to achieve rail-to-rail output drive capability with 17mA current limit and the capability to swing to within 20mV of either rail while driving a $10k\Omega$ load.

IN+ and IN- Protection

All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. For applications where either input is expected to exceed the rails by 0.5V, an external series resistor must be used to ensure the input currents never exceed 20mA (see Figure 42).

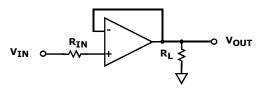


FIGURE 42. INPUT CURRENT LIMITING

Layout Guidelines for High Impedance Inputs

To achieve the maximum performance of the high input impedance and low offset voltage of the ISL28233IUZ, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. The use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 43 shows how the guard ring should be configured. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. By setting the guard ring voltage equal to the voltage at the non-inverting input, parasitic capacitance is minimized as well.

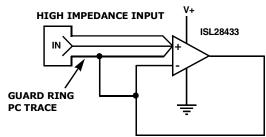


FIGURE 43. USE OF GUARD RINGS TO REDUCE

High Gain, Precision DC-Coupled Amplifier

The circuit in Figure 44 implements a single-stage DC-coupled amplifier with an input DC sensitivity of under 100nV that is only possible using a low VOS amplifier with high open loop gain. High gain DC

amplifiers operating from low voltage supplies are not practical using typical low offset precision op amps. For example, the typical $\pm 100 \mu V V_{OS}$ and offset drift 0.5μV/°C of a low offset op amp would produce a DC error of >1V with an additional 5mV/°C of temperature dependent error making it difficult to resolve DC input voltage changes in the mV range.

The $\pm 8\mu V$ max V_{OS} and $0.06\mu V/^{\circ}C$ of the ISL28233IUZ produces a temperature stable maximum DC output error of only ±80mV with a maximum temperature drift of 0.06µV/°C. The additional benefit of a very low 1/f noise corner frequency and some feedback filtering enables DC voltages and voltage fluctuations well below 100nV to be easily detected with a simple single stage amplifier.

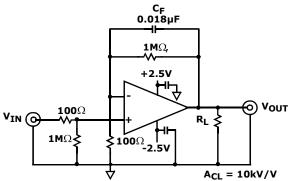


FIGURE 44. HIGH GAIN, PRECISION DC-COUPLED **AMPLIFIER**

ISL28233IUZ SPICE Model

Figure 45 shows the SPICE model schematic and Figure 46 shows the net list for the ISL28233IUZ SPICE model. The model is a simplified version of the actual device and simulates important parameters such as noise, Slew Rate, Gain and Phase. The model uses typical parameters from the "Electrical Specifications Table" on page 4. The poles and zeroes in the model were determined from the actual open and closed-loop gain and phase response. This enables the model to present an accurate AC representation of the actual device. The model is configured for ambient temperature of +25°C.

Figures 47 through 54 show the characterization vs simulation results for the Noise Density, Frequency Response vs Close Loop Gain, Gain vs Frequency vs CL and Large Signal Step Response (4V).

LICENSE STATEMENT

The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as "Licensee", a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted.

The Licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the Licensee's company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only.

This macro-model is provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE."

In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.

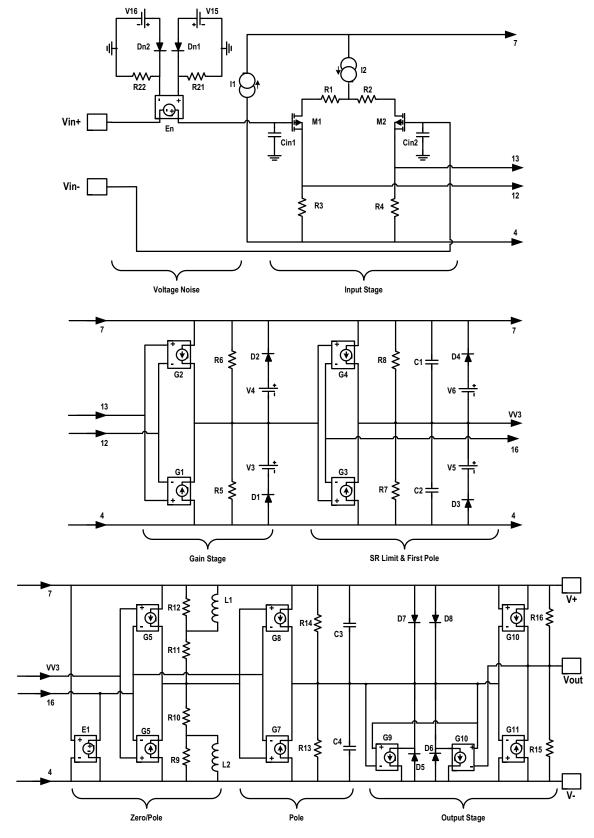


FIGURE 45. SPICE CIRCUIT SCHEMATIC

ISL28233I

```
4 VV3 12u
* ISL28233 Macromodel
                                                            C C2
* Revision B, April 2009
                                                            D D3
                                                                      4 17 DX
* AC characteristics, Voltage Noise
                                                            D D4
                                                                      18 7 DX
                                                            V V5
                                                                      VV3 17 0.7Vdc
*Copyright 2009 by Intersil Corporation
                                                            V_V6
                                                                      18 VV3 0.7Vdc
*Refer to data sheet "LICENSE STATEMENT" Use of
*this model indicates your acceptance with the
                                                            *Zero/Pole
*terms and provisions in the License Statement.
* Connections:
                     +input
                                                            E E1
                                                                      16 4 7 4 0.5
                           -input
                                                            G G5
                                                                      4 VV4 VV3 16 0.000001
                                +Vsupply
                                                            G G6
                                                                      7 VV4 VV3 16 0.000001
                                     -Vsupply
                                                            L_L1
                                                                     20 7 0.3H
                                           output
                                                            R R12
                                                                       20 7 2.5meg
                                                            R R11
                                                                       VV4 20 1meg
.subckt ISL28233
                     3
                          2
                                7
                                     4
                                           6
                                                            L L2
                                                                      4 19 0.3H
                                                            R R9
                                                                      4 19 2.5meg
*Voltage Noise
                                                            R R10
                                                                       19 VV4 1meg
D DN1
                                                            *Pole
           102 101 DN
D DN2
           104 103 DN
                                                            G G7
                                                                      4 VV5 VV4 16 0.000001
R R21
                                                            G G8
           0 101 120k
                                                                      7 VV5 VV4 16 0.000001
R R22
           0 103 120k
                                                            C C3
                                                                      VV5 7 0.12p
E EN
          8 3 101 103 1
                                                            C C4
                                                                      4 VV5 0.12p
V V15
           102 0 0.1Vdc
                                                            R R13
                                                                       4 VV5 1meg
V_V16
           104 0 0.1Vdc
                                                            R_R14
                                                                       VV5 7 1meg
                                                            *Output Stage
*Input Stage
C Cin1
           8 0 0.4p
                                                            G G9
                                                                       21 4 6 VV5 0.0000125
C Cin2
           20 2.0p
                                                            G G10
                                                                       22 4 VV5 6 0.0000125
R R1
          9 10 10
                                                            D D5
                                                                      4 21 DY
R R2
          10 11 10
                                                            D D6
                                                                      4 22 DY
R R3
          4 12 100
                                                            D D7
                                                                      7 21 DX
          4 13 100
R R4
                                                            D D8
                                                                      7 22 DX
M M1
          12899 pmosisil
                                                            R R15
                                                                       46 8k
+ L=50u
                                                            R R16
                                                                       67 8k
+ W=50u
                                                            G_G11
                                                                        6 4 VV5 4 -0.000125
M M2
          13 2 11 11 pmosisil
                                                            G_G12
                                                                        7 6 7 VV5 -0.000125
+ L=50u
+ W=50u
                                                            .model pmosisil pmos (kp=16e-3 vto=10m)
1 11
        4 7 DC 92uA
                                                            .model DN D(KF=6.4E-16 AF=1)
1 12
        7 10 DC 100uA
                                                            .MODEL DX D(IS=1E-18 Rs=1)
                                                            .MODEL DY D(IS=1E-15 BV=50 Rs=1)
*Gain stage
                                                            .ends ISL28233
G_G1
          4 VV2 13 12 0.0002
G G2
          7 VV2 13 12 0.0002
R R5
          4 VV2 1.3Meg
R R6
          VV2 7 1.3Meg
D D1
          4 14 DX
D_D2
          15 7 DX
V V3
         VV2 14 0.7Vdc
V_V4
         15 VV2 0.7Vdc
*SR limit first pole
G G3
          4 VV3 VV2 16 1
G G4
          7 VV3 VV2 16 1
R_R7
          4 VV3 1meg
R R8
          VV3 7 1meg
C C1
          VV3 7 12u
```

FIGURE 46. SPICE NET LIST

Characterization vs Simulation Results

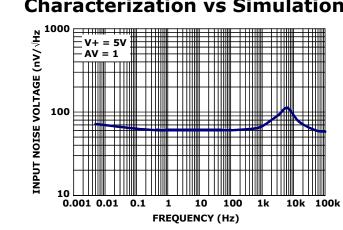


FIGURE 47. CHARACTERIZED INPUT NOISE VOLTAGE **DENSITY vs FREQUENCY**

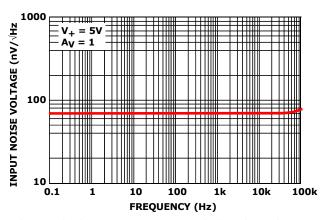


FIGURE 48. SIMULATED INPUT NOISE VOLTAGE **DENSITY vs FREQUENCY**

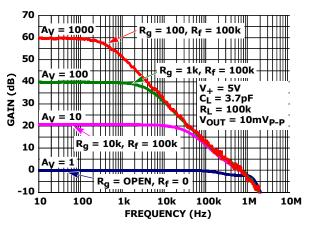


FIGURE 49. CHARACTERIZED FREQUENCY RESPONSE **vs CLOSED LOOP GAIN**

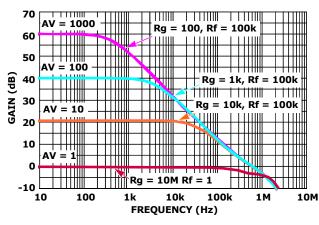


FIGURE 50. SIMULATED FREQUENCY RESPONSE vs **CLOSED LOOP GAIN**

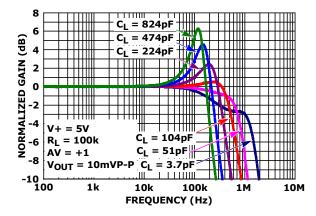


FIGURE 51. CHARACTERIZED GAIN vs FREQUENCY vs C_L

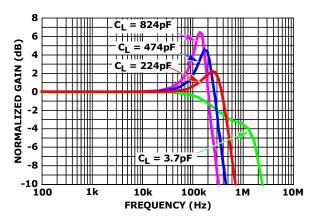
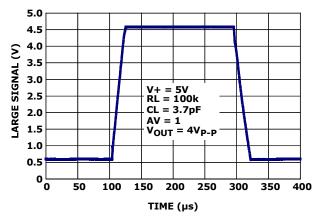



FIGURE 52. SIMULATED GAIN vs FREQUENCY vs CL

Characterization vs Simulation Results (Continued)

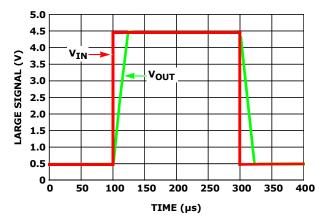


FIGURE 53. CHARACTERIZED LARGE SIGNAL STEP **RESPONSE (4V)**

FIGURE 54. SIMULATED LARGE SIGNAL STEP **RESPONSE (4V)**

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
10/8/11	FN6942.2	Removed "UZ" from Device number top of all pages.
8/23/10	FN6942.1	Removed all ISL28433 device information from data sheet. Stamped not recommended for new designs since these parts are going to be obsolete. Recommended replacement part ISL28233FUZ.
3/25/10	FN6942.0	Initial Release.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

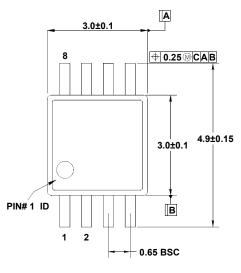
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28233I

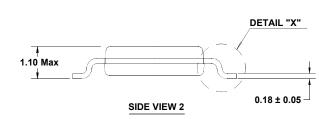
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff

FITs are available from our website at http://rel.intersil.com/reports/search.php

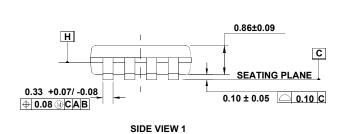
For additional products, see www.intersil.com/product tree

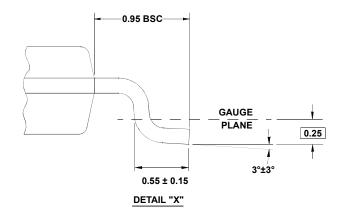
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

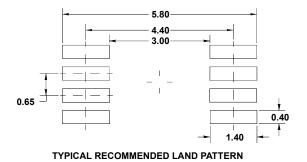

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.


For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing


M8.118A


8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP) Rev 0, 9/09



NOTES:

- 1. Dimensions are in millimeters.
- 2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSE Y14.5m-1994.
- Plastic or metal protrusions of 0.15mm max per side are not included.
- Plastic interlead protrusions of 0.25mm max per side are not included.
- 5. Dimensions "D" and "E1" are measured at Datum Plane "H".
- 6. This replaces existing drawing # MDP0043 MSOP 8L.