

## STL15N60M2-EP

# N-channel 600 V, 0.389 Ω typ., 7 A MDmesh™ M2 EP Power MOSFET in a PowerFLAT™ 5x6 HV package

Datasheet - production data

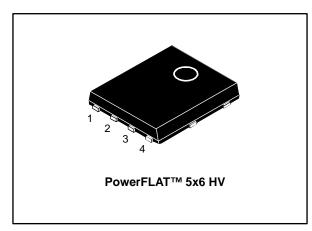
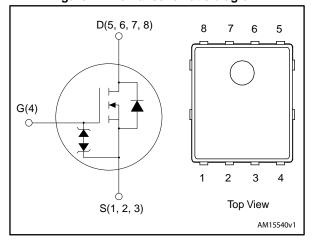




Figure 1: Internal schematic diagram



#### **Features**

| Order code    | V <sub>DS</sub> @ T <sub>Jmax</sub> | R <sub>DS(on)</sub> max. | I <sub>D</sub> | P <sub>TOT</sub> |
|---------------|-------------------------------------|--------------------------|----------------|------------------|
| STL15N60M2-EP | 650 V                               | 0.418 Ω                  | 7 A            | 55 W             |

- Extremely low gate charge
- Excellent output capacitance (C<sub>OSS</sub>) profile
- Very low turn-off switching losses
- 100% avalanche tested
- Zener-protected

#### **Applications**

- Switching applications
- Tailored for very high frequency converters (f > 150 kHz)

#### Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 EP enhanced performance technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics with very low turn-off switching losses, rendering it suitable for the most demanding very high frequency converters.

**Table 1: Device summary** 

| Order code    | Marking   | Package           | Packing       |
|---------------|-----------|-------------------|---------------|
| STL15N60M2-EP | 15N60M2EP | PowerFLAT™ 5x6 HV | Tape and reel |

Contents STL15N60M2-EP

## Contents

| 1 | Electrical ratings |                                       |    |
|---|--------------------|---------------------------------------|----|
| 2 | Electric           | cal characteristics                   | 4  |
|   | 2.1                | Electrical characteristics (curves)   | 6  |
| 3 | Test cir           | cuits                                 | 9  |
| 4 | Packag             | e information                         | 10 |
|   | 4.1                | PowerFLAT™ 5x6 HV package information | 11 |
|   | 4.2                | PowerFLAT™ 5x6 packing information    | 13 |
| 5 | Revisio            | n history                             | 15 |

STL15N60M2-EP Electrical ratings

## 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                                | Value      | Unit  |
|--------------------------------|----------------------------------------------------------|------------|-------|
| $V_{GS}$                       | Gate-source voltage                                      | ±25        | V     |
| 1-                             | Drain current (continuous) at T <sub>case</sub> = 25 °C  | 7          | А     |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>case</sub> = 100 °C | 4.6        | A     |
| I <sub>DM</sub> <sup>(1)</sup> | Drain current (pulsed)                                   | 28         | А     |
| P <sub>TOT</sub>               | Total dissipation at T <sub>case</sub> = 25 °C           | 55         | W     |
| I <sub>AR</sub> <sup>(2)</sup> | Avalanche current, repetitive or not repetitive          | 1.5        | Α     |
| E <sub>AS</sub> <sup>(3)</sup> | Single pulse avalanche energy                            | 110        | mJ    |
| dv/dt <sup>(4)</sup>           | Peak diode recovery voltage slope                        | 15         | \//no |
| dv/dt <sup>(5)</sup>           | MOSFET dv/dt ruggedness                                  | 50 V/ns    |       |
| T <sub>stg</sub>               | Storage temperature                                      | -55 to 150 | °C    |
| T <sub>j</sub>                 | Operating junction temperature                           | -55 10 150 | C     |

#### **Notes**

Table 3: Thermal data

| Symbol                              | Parameter                           | Value | Unit   |
|-------------------------------------|-------------------------------------|-------|--------|
| R <sub>thj-case</sub>               | Thermal resistance junction-case    | 2.27  | °C/W   |
| R <sub>thj-amb</sub> <sup>(1)</sup> | Thermal resistance junction-ambient | 59    | · C/vv |

#### Notes:

 $<sup>^{\</sup>left( 1\right) }$  Pulse width is limited by safe operating area.

 $<sup>^{(2)}</sup>$  Pulse width limited by  $T_{jmax}$ .

 $<sup>^{(3)}</sup>$  starting  $T_j$  = 25 °C,  $I_D$  =  $I_{AR},\,V_{DD}$  = 50 V.

 $<sup>^{(4)}</sup>$   $I_{SD} \le 7$  A, di/dt=400 A/µs;  $V_{DS}$  peak <  $V_{(BR)DSS},~V_{DD}$  = 80%  $V_{(BR)DSS}.$ 

 $<sup>^{(5)}</sup>$  V<sub>DS</sub>  $\leq 480$  V.

<sup>&</sup>lt;sup>(1)</sup> When mounted on a 1-inch² FR-4, 2 Oz copper board.

Electrical characteristics STL15N60M2-EP

### 2 Electrical characteristics

(T<sub>case</sub> = 25 °C unless otherwise specified)

#### Table 4: Static

| Symbol               | Parameter                             | Test conditions                                                                | Min. | Тур.  | Max.  | Unit |
|----------------------|---------------------------------------|--------------------------------------------------------------------------------|------|-------|-------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage        | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$                                     | 600  |       |       | V    |
|                      | Zaro goto voltogo droin               | $V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$                                 |      |       | 1     |      |
| I <sub>DSS</sub>     | Zero gate voltage drain<br>current    | $V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$<br>$T_{case} = 125 \text{ °C}$ |      |       | 100   | μΑ   |
| I <sub>GSS</sub>     | Gate-body leakage current             | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$                              |      |       | ±10   | μΑ   |
| $V_{GS(th)}$         | Gate threshold voltage                | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                           | 2    | 3     | 4     | V    |
| R <sub>DS(on)</sub>  | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 4.5 A                                 |      | 0.389 | 0.418 | Ω    |

#### Table 5: Dynamic

| Symbo<br>I       | Parameter                     | Test conditions                                 | Min. | Тур. | Max. | Unit |
|------------------|-------------------------------|-------------------------------------------------|------|------|------|------|
| C <sub>iss</sub> | Input capacitance             |                                                 | 1    | 590  | 1    |      |
| Coss             | Output capacitance            | $V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$    | •    | 30   | ı    | pF   |
| C <sub>rss</sub> | Reverse transfer capacitance  | $V_{GS} = 0 V$                                  | 1    | 1.1  | 1    | Pi   |
| Coss eq.         | Equivalent output capacitance | $V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V           | -    | 148  | -    | pF   |
| $R_G$            | Intrinsic gate resistance     | f = 1 MHz, I <sub>D</sub> = 0 A                 | -    | 7    | -    | Ω    |
| Qg               | Total gate charge             | $V_{DD} = 480 \text{ V}, I_{D} = 11 \text{ A},$ | •    | 17   | •    |      |
| $Q_{gs}$         | Gate-source charge            | V <sub>GS</sub> = 10 V (see <i>Figure 16</i> :  | 1    | 3.1  | •    | nC   |
| $Q_{gd}$         | Gate-drain charge             | "Gate charge test circuit")                     | -    | 7.3  | •    |      |

#### Table 6: Switching energy

| Symbol           | Parameter                              | Test conditions                                                                          | Min. | Тур. | Max. | Unit |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------|------|------|------|------|
|                  | Turn-off energy (from 90%              | $V_{DD} = 400 \text{ V}, I_D = 1.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ | ı    | 5    | -    |      |
| E <sub>OFF</sub> | V <sub>GS</sub> to 0% I <sub>D</sub> ) | $V_{DD} = 400 \text{ V}, I_D = 3.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ | _    | 5.2  | -    | μJ   |

#### Table 7: Switching times

| Symbol             | Parameter           | Test conditions                                                    | Min. | Тур. | Max. | Unit |
|--------------------|---------------------|--------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub> | Turn-on delay time  | $V_{DD} = 300 \text{ V}, I_D = 5.5 \text{ A},$                     | 1    | 11   | -    |      |
| t <sub>r</sub>     | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$<br>(see Figure 15: "Switching | 1    | 10   | -    |      |
| $t_{d(off)}$       | Turn-off delay time | times test circuit for                                             | -    | 40   | -    | ns   |
| t <sub>f</sub>     | Fall time           | resistive load" and Figure<br>20: "Switching time<br>waveform")    | -    | 15   | -    |      |

Table 8: Source-drain diode

| Symbol                          | Parameter                     | Test conditions                                                                       | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|---------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                                       | 1    |      | 7    | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                                       | -    |      | 28   | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | $V_{GS} = 0 \text{ V}, I_{SD} = 7 \text{ A}$                                          | -    |      | 1.6  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 11 A,                                                               | 1    | 280  |      | ns   |
| Qrr                             | Reverse recovery charge       | di/dt = 100 A/ $\mu$ s,<br>V <sub>DD</sub> = 60 V (see <i>Figure 17:</i>              | -    | 2.7  |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | "Test circuit for inductive load switching and diode recovery times")                 | ,    | 19.5 |      | А    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 11 A,                                                               | -    | 400  |      | ns   |
| Qrr                             | Reverse recovery charge       | di/dt = 100 A/μs,<br>V <sub>DD</sub> = 60 V, T <sub>i</sub> = 150 °C                  | -    | 3.8  |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 17: "Test circuit for inductive load switching and diode recovery times") | -    | 19   |      | А    |

#### Notes:

 $<sup>^{\</sup>left( 1\right) }$  Pulse width is limited by safe operating area.

<sup>&</sup>lt;sup>(2)</sup> Pulse test: pulse duration = 300  $\mu$ s, duty cycle 1.5%.

## 2.1 Electrical characteristics (curves)

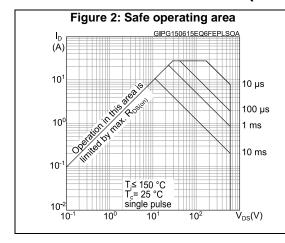
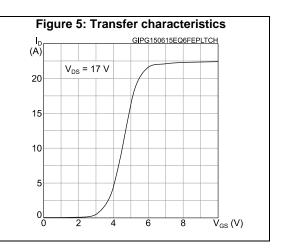


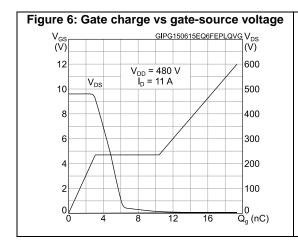

Figure 3: Thermal impedance  $\begin{array}{c} \text{K} \\ \delta = 0.5 \\ 0.2 \\ 10^{-1} \\ 0.1 \\ 10^{-2} \\ \text{Single pulse} \end{array}$ 

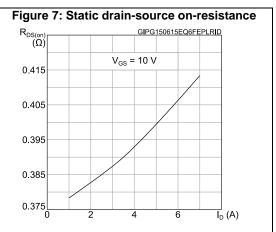
Figure 4: Output characteristics

ID GIPG150615E06FEPLOCH

(A) VGS = 6, 7, 8, 9, 10 V


20


15


VGS = 5 V

10

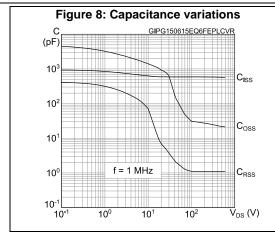
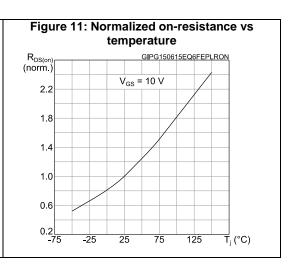
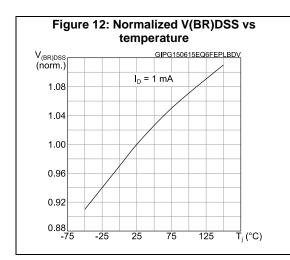
0 4 8 12 16 VDS (V)

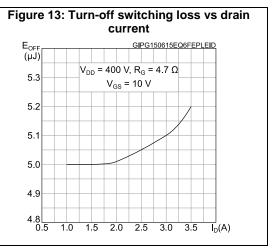






STL15N60M2-EP Electrical characteristics



Figure 9: Output capacitance stored energy

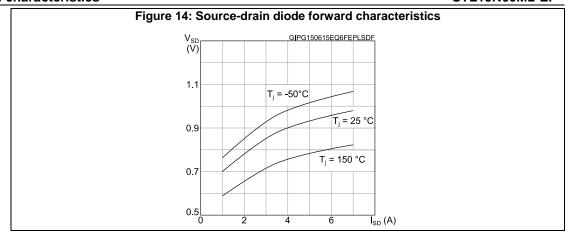
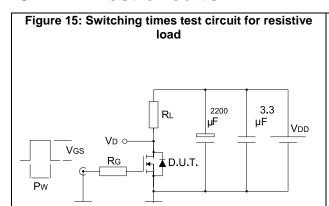
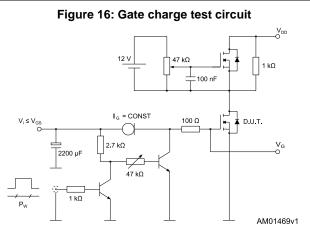

Eoss GIPG150615EQ6FEPLEOS
(IJJ)
5
4
3
2
1
0
0
100
200
300
400
500
V<sub>DS</sub> (V)

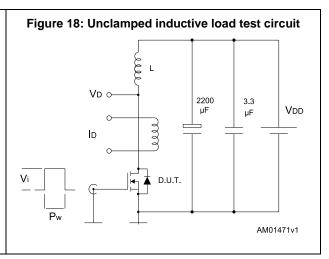
Figure 10: Normalized gate threshold voltage vs temperature V<sub>GS(th)</sub> (norm.) GIPG150615EQ6FEPLVTH I<sub>D</sub> = 250 μA 1.1 1.0 0.9 0.8 0.7 0.6L -75 25 75 125 T<sub>j</sub> (°C) -25

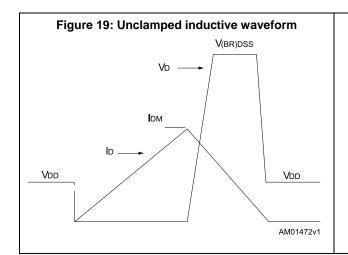


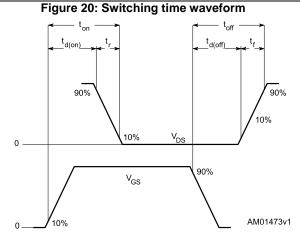






STL15N60M2-EP Test circuits


AM01468v1


## 3 Test circuits











## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STL15N60M2-EP Package information

## 4.1 PowerFLAT™ 5x6 HV package information

Figure 21: PowerFLAT™ 5x6 HV package outline

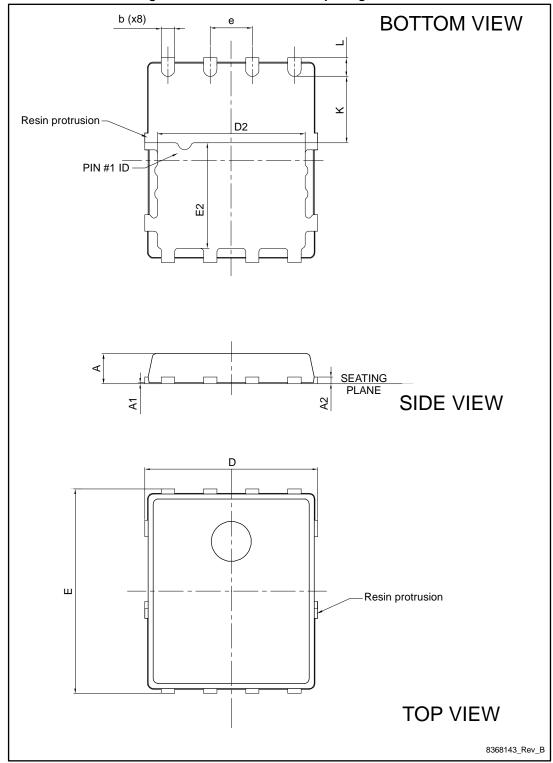
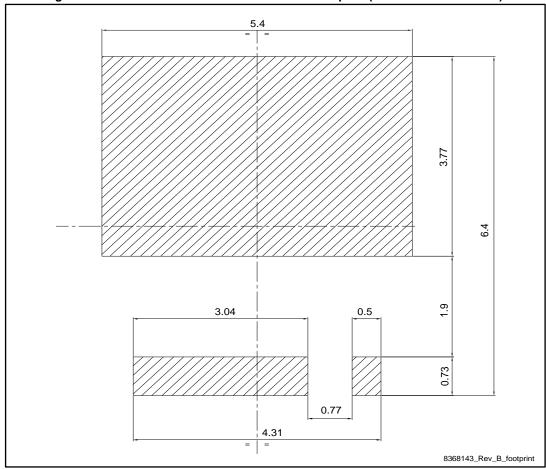




Table 9: PowerFLAT™ 5x6 HV mechanical data

| Dim. | mm   |      |      |  |  |
|------|------|------|------|--|--|
| Dim. | Min. | Тур. | Max. |  |  |
| Α    | 0.80 |      | 1.00 |  |  |
| A1   | 0.02 |      | 0.05 |  |  |
| A2   |      | 0.25 |      |  |  |
| b    | 0.30 |      | 0.50 |  |  |
| D    | 5.00 | 5.20 | 5.40 |  |  |
| Е    | 5.95 | 6.15 | 6.35 |  |  |
| D2   | 4.30 | 4.40 | 4.50 |  |  |
| E2   | 3.10 | 3.20 | 3.30 |  |  |
| е    |      | 1.27 |      |  |  |
| L    | 0.50 | 0.55 | 0.60 |  |  |
| K    | 1.90 | 2.00 | 2.10 |  |  |

Figure 22: PowerFLAT™ 5x6 HV recommended footprint (dimensions are in mm)



STL15N60M2-EP Package information

## 4.2 PowerFLAT™ 5x6 packing information

Figure 23: PowerFLAT™ 5x6 tape outline (dimensions are in mm)

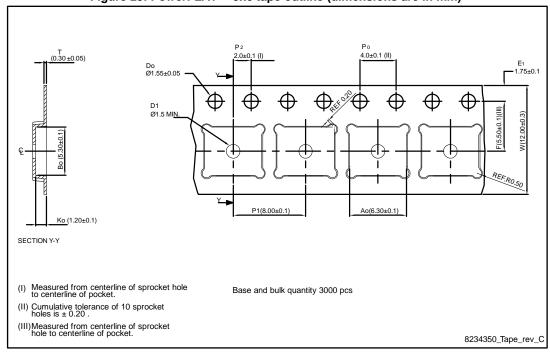



Figure 24: PowerFLAT™ 5x6 package orientation in carrier tape



PART NO.

R0.50

W2

11.9/15.4

W2

11.9/15.4

All dimensions are in millimeters

Figure 25: PowerFLAT™ 5x6 reel outline

STL15N60M2-EP

8234350\_Reel\_rev\_C

STL15N60M2-EP Revision history

## 5 Revision history

**Table 10: Document revision history** 

| Date        | Revision | Changes        |
|-------------|----------|----------------|
| 15-Jun-2015 | 1        | First release. |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

