GP1FD210RP

Features

- 1. Thin type (4.2mm) fiber optic receiver
- 2. Compact (adoption of small jack for mini plug) JIS C6560
- 3. Both optical and electrical signal can be distinguished and received
- 4. Low voltage operation (V_{CC} 2.4 to 3.0V)
- 5. High speed data transmission

(Signal transmission speed : MAX, 8Mb/s (NRZ signal))

Applications

- 1. MD players
- 2. Portable CD players (Optic receiver part)

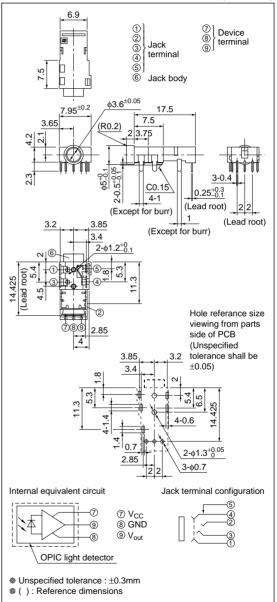
Absolute Maximum Ratings (Photoelectric conversion element)

Parameter	Symbol	Rating	Unit		
Supply voltage	V _{CC}	-0.5 to +7.0	V		
Operating temperature	T _{opr}	-20 to +70	°C		
Storage temperature	T _{stg}	-30 to +80	°C		
*1 Soldering temperature (Reflow)	T _{sol}	240	°C		
Output current	I _{OH}	2 (source current)	mA		
Output current	I _{OL}	4 (sink current)	mA		

 $(T_{\circ}=25^{\circ}C)$

*1 For 10s (according to reflow profile in the specification sheet)

Absolute Maximum Ratings(Jack)


Parameter	Symbol	Rating	Unit
Total power dissipation	P _{tot}	D.C. 12V, 1A	-
Operating temperature	T _{opr}	-20 to +70	°C
Storage temperature	T _{stg}	-30 to +80	°C
*1 Soldering temperature	T _{sol}	240	°C
*2 Isolation voltage	Viso	A.C. 500V _{rms}	-

*2 For 1minute

Thin Low Voltage Operation Type Optical Mini-jack for Digital Audio Equipment

Outline Dimensions

(Unit : mm)

* "OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a signal chip.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	V _{CC}	2.4	2.5	3.0	V
Operating transfer rate	Т	0.1	-	8	Mb/s
Receiver input optical power level	P _C	-24.0	-	-14.5	dBm

Electro-optical Characteristics

 $(T_a=25^{\circ}C, V_{CC}=3.0V)$

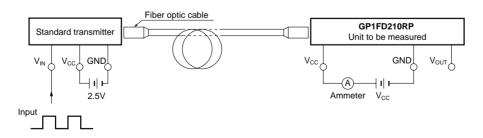
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitivity wavelength	λ_p		-	700	-	nm
Dissipation current	I _{CC}	Refer to Fig.1	-	5	7.5	mA
High level output voltage	V _{OH}	Refer to Fig.2	2.0	2.2	-	V
Low level output voltage	V _{OL}	Refer to Fig.2	-	0.2	0.5	V
Rise time	tr	Refer to Fig.2	-	17	-	ns
Fall time	t _f	Refer to Fig.2	-	5	-	ns
$Low \rightarrow High delay time$	t _{pLH}	Refer to Fig.2	-	_	180	ns
High \rightarrow Low delay time	t _{pHL}	Refer to Fig.2	-	-	180	ns
Pulse width distortion	Δt_W	Refer to Fig.2	-30	-	+30	ns
Jitter	A.+	Refer to Fig.3, P _C =-14.5dBm	-	1	30	ns
Jittei	Δt_j	Refer to Fig.p3, P _C =-24dBm	-	-	30	ns

Mechanical and Electrical Characteristics(Jack)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Insertion force, with drawal force	Fp	*3	5	-	35	N
Contact resistance	R _{con}	*4	-	-	30	mΩ
Isolation resistance	R _{iso}	D.C. 500V, 1minute	100	-	-	MΩ

Note) This jack is designed for applicable to \$\$3.5 compact single head plug (JIS C6560)

*3 Measuring method of insertion force and withdrawal force


Insertion and withdrawal force shall be measured after inserting and withdrawing 3 times by using JIS C6560 standard plug for test

*4 Measuring method of contact resistance

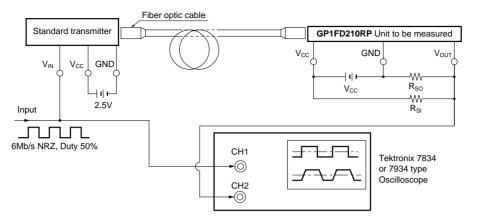

It measures at 100mA or less and 1 000Hz at the condition of inserting JIS C6560 standard plug for test in which movable contact terminal and make contacts are described

Fig.1 Dissipation Current

Input conditions		Measuring method
Supply voltage	V _{CC} =2.5V	Measured on
Optical output coupling with fiber	$P_C = -14.5 dBm$	an ammeter
Standard transmitter input signal	6Mb/s NRZ, Duty 50% or 3Mb/s biphase mark PRBS signal	(DC average amperage)

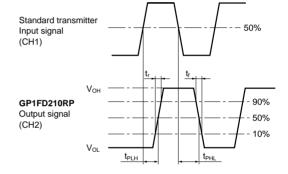
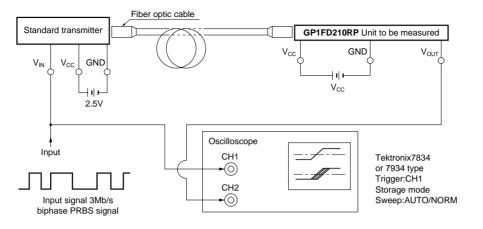


Fig.2 Measuring Method of Output Voltage and Pulse Response

Test item

Test item	Symbol
Low \rightarrow High pulse delay time	t _{PLH}
High \rightarrow Low pulse delay time	t _{PHL}
Rise time	tr
Fall time	t _f
Pulse width distortion $\Delta t_w = t_{PHL} - t_{PLH}$	Δt_{w}
High level output voltage	V _{OH}
Low level output voltage	V _{OL}

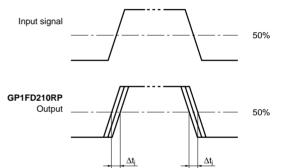

Notes (1) V_{CC}=2.5V (State of operating)

(2) The fiber coupling light output set at -14.5dBm/-24.0dBm

(2) The next control of the oscilloscope must be more than 1M Q and less than 10pF
(4) The output (H/L level) of **GP1FD210RP** are not fixed constantly when it receives

the modulating light (including DC light, no input light) less than 0.1Mb/s

Fig.3 Measuring Method of Jitter


Test item

Test item	Symbol	Test condition
Jitter	Δt_j	Set the trigger on the rise of input signal to measure the jitter of the rise of output
Jitter Δt_j		Set the trigger on the fall of input signal to measure the jitter of the fall of output

Notes (1) The fiber coupling light output set at -14.5dBm/-24.0dBm (2) The waveform write time shall be 3 seconds. But do not allow the waveform

to be distorted by increasing the brightness too much

to be another by interlaying the originates too interlay Ω (State of operating) (4) The probe for the oscilloscope must be more than 1M Ω and less than 10pF

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- --- Space applications
- --- Telecommunication equipment [trunk lines]
- --- Nuclear power control equipment
- --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.