
NOT RECOMMENDED FOR NEW DESIGNS

- Choose TPA2000D2 For Upgrade
- **Extremely Efficient Class-D Stereo** Operation
- **Drives L and R Channels**
- 2-W BTL Output Into 4 Ω
- 5-W Peak Music Power
- **Fully Specified for 5-V Operation**
- **Low Quiescent Current**
- Shutdown Control . . . 0.2 µA
- Thermally-Enhanced PowerPAD™ Surface-**Mount Packaging**
- Thermal, Over-Current, and Under-Voltage **Protection**

description

The TPA005D12 is a monolithic power IC stereo audio amplifier that operates in extremely efficient Class-D operation, using the high switching speed of power DMOS transistors to replicate the analog input signal through high-frequency switching of the output stage. This allows the TPA005D12 to be configured as a bridge-tied load (BTL) amplifier capable of delivering up to 2 W of continuous average power into a 4- Ω load at 0.5% THD+N from a 5-V power supply in the high-fidelity audio

DCA PACKAGE (TOP VIEW)

NC - No internal connection

frequency range (20 Hz to 20 kHz). A BTL configuration eliminates the need for external coupling capacitors on the output. A chip-level shutdown control is provided to limit total quiescent current to 0.2 μA, making the device ideal for battery-powered applications.

A full range of protection circuitry is included to increase device reliability: thermal, over-current, and under-voltage shutdown, with two status feedback terminals for use when any error condition is encountered.

The high switching frequency of the TPA005D12 allows the output filter to consist of three small capacitors and two small inductors per channel. The high switching frequency also allows for good THD+N performance.

The TPA005D12 is offered in the thermally enhanced 48-pin PowerPAD TSSOP surface-mount package (designator DCA).

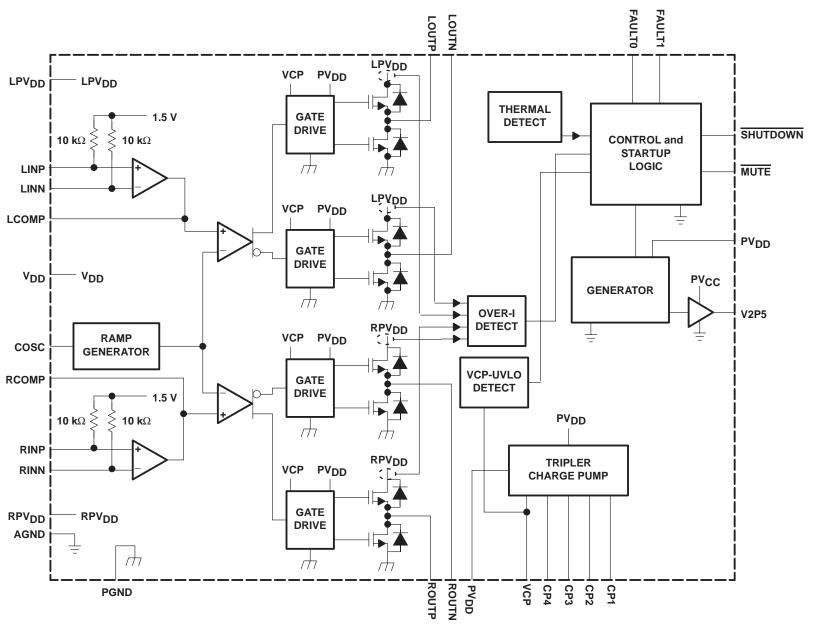
AVAILABLE OPTIONS

	PACKAGED DEVICES	
T _A	TSSOP† (DCA)	
-40°C to 125°C	TPA005D12DCA	

[†] The DCA package is available in left-ended tape and reel. To order a taped and reeled part, add the suffix R to the part number (e.g., TPA005D12DCAR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments Incorporated.



INSTRUMENTS
POST OFFICE BOX 656300. DALLAS, TEXAS 75265

lemplate

Release Date: 7-11-94

schematic

NOTE A: LPVDD, RPVDD, VDD, and PVDD are externally connected. AGND and PGND are externally connected.

Terminal Functions

TERMINAL		
NAME NO.		DESCRIPTION
AGND	3, 7, 20, 46, 47	Analog ground for headphone and Class-D analog sections
cosc	48	Capacitor I/O for ramp generator. Adjust the capacitor size to change the switching frequency.
CP1	25	First diode node for charge pump
CP2	24	First inverter switching node for charge pump
CP3	23	Second diode node for charge pump
CP4	26	Second inverter switching node for charge pump
FAULT0	42	Logic level fault0 output signal. Lower order bit of the two fault signals with open drain output.
FAULT1	41	Logic level fault1 output signal. Higher order bit of the two fault signals with open drain output.
LCOMP	6	Compensation capacitor terminal for left-channel Class-D amplifier
LINN	4	Class-D left-channel negative input
LINP	5	Class-D left-channel positive input
LOUTN	14, 15	Class-D amplifier left-channel negative output of H-bridge
LOUTP	10, 11	Class-D amplifier left-channel positive output of H-bridge
LPV _{DD}	9, 16	Class-D amplifier left-channel power supply
MUTE	2	Active-low logic-level mute input signal. When MUTE is held low, the selected amplifier is muted. When MUTE is held high, the device operates normally. When the Class-D amplifier is muted, the low-side output transistors are turned on, shorting the load to ground.
NC	17, 18, 19, 30, 31, 32	No connection
PGND	12, 13	Power ground for left-channel H-bridge only
PGND	27	Power ground for charge pump only
PGND	36, 37	Power ground for right-channel H-bridge only
PV_{DD}	21, 28	V _{DD} supply for charge-pump and gate-drive circuitry
RCOMP	43	Compensation capacitor terminal for right-channel Class-D amplifier
RINN	45	Class-D right-channel negative input
RINP	44	Class-D right-channel positive input
RPV _{DD}	33, 40	Class-D amplifier right-channel power supply
ROUTN	34, 35	Class-D amplifier right-channel negative output of H-bridge
ROUTP	38, 39	Class-D amplifier right-channel positive output of H-bridge
SHUTDOWN	1	Active-low logic-level shutdown input signal. When SHUTDOWN is held low, the device goes into shutdown mode. When SHUTDOWN is held at logic high, the device operates normally.
V2P5	29	2.5-V internal reference bypass
VCP	22	Storage capacitor terminal for charge pump
V _{DD}	8	V _{DD} bias supply for analog circuitry. This terminal needs to be well filtered to prevent degrading the device performance.

Class-D amplifier faults

Table 1. Class-D Amplifier Fault Table

FAULT 0 [†]	FAULT 1 [†]	DESCRIPTION
1	1	No fault. — The device is operating normally.
0	1	Charge pump under-voltage lock-out (VCP-UV) fault. — All low-side transistors are turned on, shorting the load to ground. Once the charge pump voltage is restored, normal operation resumes, but FAULT1 is still active. FAULT1 is cleared by cycling MUTE, SHUTDOWN, or the power supply.
1	0	Over-current fault. — The output transistors are all switched off. This causes the load to be in a high-impedance state. This is a latched fault and is cleared by cycling MUTE, SHUTDOWN, or the power supply.
0	0	Thermal fault. — All the low-side transistors are turned on, shorting the load to ground. This is latched fault and is cleared by cycling MUTE, SHUTDOWN, or the power supply.

[†] These logic levels assume a pullup to PV_{DD} from the open-drain outputs.

absolute maximum ratings over operating free-air temperature range, $T_C = 25^{\circ}C$ (unless otherwise noted)[‡]

Supply voltage, V _{DD} (PV _{DD} , LPV _{DD} , RPV _{DD} , V _{DD})	5.5 V
Input voltage, V _I (SHUTDOWN, MUTE)	
Output current, IO (FAULT0, FAULT1), open drain terminated	1 mA
Charge pump voltage, V _{CP}	PV _{DD} + 15 V
Continuous H-bridge output current	2 A
Pulsed H-Bridge output current, each output, I _{max} (see Note 1)	5 A
Continuous total power dissipation	
Operating virtual junction temperature range, T _J	–40°C to 150°C
Operating case temperature range, T _C	–40°C to 125°C
Storage temperature range, T _{stq}	–40°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Pulse duration = 10 ms, duty cycle \leq 2%

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C†	DERATING FACTOR	T _A = 70°C	T _A = 85°C	T _A = 125°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING	POWER RATING
DCA	5.6 W	44.8 mW/°C	3.6 W	2.9 W	1.1 mW

[†] Please see the Texas Instruments document, *PowerPAD Thermally Enhanced Package Application Report* (literature number SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled *Texas Instruments Recommended Board for PowerPAD* on page 33 of the before mentioned document.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, PV _{DD} , LPV _{DD} , RPV _{DD} , V _{DD}	4.5		5.5	V
High-level input voltage, VIH	4.25			V
Low-level input voltage, V _{IL}			0.75	V
Audio inputs, LINN, LINP, RINN, RINP, differential input voltage			1	VRMS
PWM frequency	150		450	kHZ

electrical characteristics, Class-D amplifier, V_{DD} = PV_{DD} = LPV_{DD} = SV_{DD} = SV_{D

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PSRR	Power supply rejection ratio	$V_{DD} = PV_{DD} = LPV_{DD} = RPV_{DD} = 4.5 \text{ V}$ to 5.5 V		40		dB
I _{DD}	Supply current	No load, No filter		25	35	mA
I _{DD} (MUTE)	Supply current, mute mode	MUTE = 0 V		3.9	10	mA
I _{DD} (SD)	Supply current, shutdown mode	SHUTDOWN = 0 V		0.2	10	μΑ
lн	High-level input current	V _{IH} = 5.3 V			1	μΑ
I _{IL}	Low-level input current	V _{IL} = -0.3 V			-1	μΑ
r _{DS(on)}	Total static drain-to-source on-state resistance (low-side plus high-side FETs)	I _D = 2 A		700	900	mΩ
r _{DS(on)}	Matching, high-side to high-side, low-side to low-side, same channel	I _D = 0.5 A	95%	99%	·	

operating characteristics, Class-D amplifier, V_{DD} = PV_{DD} = LPV_{DD} = SV_{DD} = SV_{DD

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
PO	RMS output power, THD = 0.5%, per channel				2		W
THD+N	Total harmonic distortion plus noise	P _O = 1 W,	f = 1 kHz		0.2%		
	Efficiency	P _O = 1 W,	$R_L = 8 \Omega$		80%		
Ay	Gain				25		dB
	Left/right channel gain matching			95%	99%		
	Noise floor				-55		dBV
	Dynamic range				70		dB
	Crosstalk	f = 1 kHz			-55		dB
	Frequency response bandwidth, post output filter, -3 dB		·	20		20 000	Hz
ВОМ	Maximum output power bandwidth		·			20	kHz

thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JP}$	Thermal resistance, junction-to-pad				10	°C/W
	Thermal shutdown temperature			165		°C

PARAMETER MEASUREMENT INFORMATION

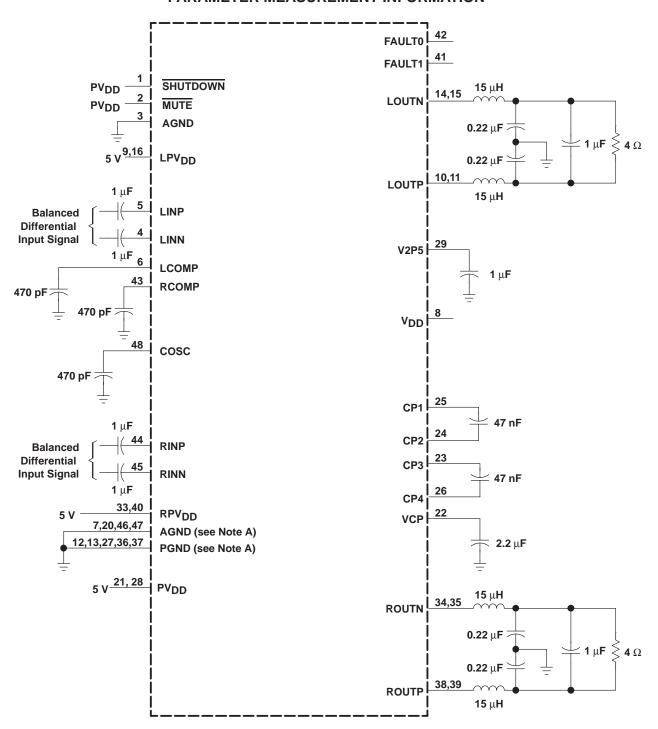
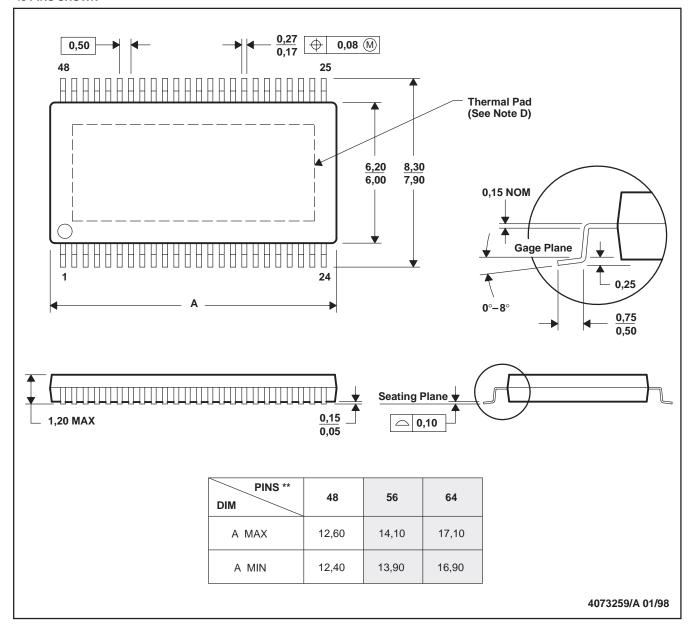


Figure 1. 5-V, 4- Ω Test Circuit, Class-D Amplifier



MECHANICAL DATA

DCA (R-PDSO-G**)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

PACKAGE OPTION ADDENDUM

31-Jan-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins I	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPA005D12DCA	ACTIVE	HTSSOP	DCA	48	40	None	CU NIPDAU	Level-2-220C-1 YEAR
TPA005D12DCAR	ACTIVE	HTSSOP	DCA	48	2000	None	CU NIPDAU	Level-2-220C-1 YEAR

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated