## LOGARITHMIC AMPLIFIER

## FEATURES

- ACCEPTS INPUT VOLTAGES OR CURRENTS OF EITHER POLARITY
- WIDE INPUT DYNAMIC RANGE 6 Decades of Current 4 Decades of Voltage
- VERSATILE Log, Antilog, and Log Ratio Capability


## DESCRIPTION

Packaged in a ceramic double wide DIP, the 4127 is the first hybrid logarithmic amplifier that accepts signals of either polarity from current or voltage sources. A special purpose monolithic chip, developed specifically for logarithmic conversions, functions accurately for up to six decades of input
current and four decades of input voltage. In addition, a current inverter and a precise internal reference allow pin programming of the 4127 as a logarithmic, log ratio, or antilog amplifier.
To further increase its versatility and reduce your system cost, the 4127 has an uncommitted operational amplifier in its package that can be used as a buffer, inverter, filter, or gain element.
The 4127 is available with initial accuracies (log conformity) of $0.5 \%$ and $1.0 \%$, and operates over an ambient temperature range of $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
With its versatility and high performance, the 4127 has many applications in signal compression, transducer linearization, and phototube buffering. Manufacturers of medical equipment, analytical instruments, and process control instrumentation will find the 4127 a low cost solution to many signal processing problems.


International Airport Industrial Park • Mailing Address: PO Box 11400 - Tucson, AZ 85734 - Street Address: 6730 S. Tucson Blvd. - Tucson, AZ 85706 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

## SPECIFICATIONS

## ELECTRICAL

Typical Specifications at $+25^{\circ} \mathrm{C}$ with rated supplies, unless otherwise noted.

| MODEL | 4127KG | 4127JG |
| :---: | :---: | :---: |
| ACCURACY ${ }^{(1)}$, \% of FSR Current Source Input: 1nA to 1 mA Voltage Input: 1 mV to 10 V | $\begin{aligned} & 0.5 \% \max \\ & 0.5 \% \max \end{aligned}$ | 1\% max 1\% max |
| INPUT <br> Current Source Input, Pin 4 Current Source Input, Pin 7 Reference Current Input, Pin 2 Absolute Maximum Inputs | $\begin{aligned} & +1 \mathrm{nA} \text { to }+1 \mathrm{~mA} \\ & -1 \mathrm{nA} \text { to }-1 \mathrm{~mA} \\ & +1 \mu \mathrm{~A} \text { to }+1 \mathrm{~mA} \end{aligned}$ <br> $\pm 10 \mathrm{~mA}$ or $\pm$ Supply Volts |  |
| OUTPUT <br> Voltage Current Impedance | $\begin{gathered} \pm 10 \mathrm{~V} \\ \pm 5 \mathrm{~mA} \\ 10 \Omega \end{gathered}$ |  |
| FREQUENCY RESPONSE <br> -3dB Small Signal at Current Input of $100 \mu \mathrm{~A}$ <br> of $10 \mu \mathrm{~A}$ <br> of $1 \mu \mathrm{~A}$ <br> of 100 nA <br> of 10 nA <br> Step Response to within $\pm 1 \%$ of Final Value $\left(I_{R}=1 \mu A, A=5\right)$ | 90kHz <br> 50 kHz <br> 5 kHz <br> 250 Hz <br> 80 Hz |  |
| STABILITY <br> Scale Factor Drift $\left(\Delta \mathrm{A} /{ }^{\circ} \mathrm{C}\right)$ <br> Reference Current Drift ( $\Delta I_{R} /{ }^{\circ} \mathrm{C}$ ) <br> Input Offset Current Drift $\left(\Delta \mathrm{I}_{\mathrm{S}}{ }^{\circ} \mathrm{C}\right.$ ) <br> Input Offset Voltage Drift <br> Accuracy vs Supply Variation <br> Reference Current Input Offset Voltage <br> Input Noise - Current Input <br> Input Noise - Voltage Input | $\begin{gathered} \pm 0.0005 \mathrm{~A} /{ }^{\circ} \mathrm{C} \\ \pm 0.001 \mathrm{I}_{\mathrm{R}} /{ }^{\circ} \mathrm{C} \text { for } \mathrm{I}_{\mathrm{R}} \geq 1 \mu \mathrm{~A} \\ \pm 0.003 \mathrm{I}_{\mathrm{R}} /{ }^{\circ} \mathrm{C} \text { for } 400 \mathrm{nA}<\mathrm{I}_{\mathrm{R}}<1 \mu \mathrm{~A} \\ 10 \mathrm{pA} \text { at }+25^{\circ} \mathrm{C}, \text { Doubbles Every } 10^{\circ} \mathrm{C} \\ \pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \pm 0.001 \mathrm{I}_{\mathrm{R}} / \mathrm{V} \\ \pm 300 \mu \mathrm{~V} / \mathrm{V} \\ 1 \mathrm{pA}, \mathrm{rms}, 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ 10 \mu \mathrm{rms}, 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{gathered}$ |  |
| UNCOMMITTED OP AMP CHARAC <br> Input Offset Voltage <br> Input Bias Current <br> Input Impedance <br> Large Signal Voltage Gain <br> Output Current | 5 mV <br> 40nA <br> $1 \mathrm{M} \Omega$ <br> 85dB <br> 5 mA |  |
| TEMPERATURE RANGE <br> Specification <br> Operating <br> Storage | $\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ -10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| POWER SUPPLY REQUIREMENTS <br> Rated Supply Voltages Supply Voltage Range Supply Current Drain at Quiescent, max at Full Load, max | $\begin{gathered} \pm 15 \mathrm{VDC} \\ \pm 14 \mathrm{VDC} \text { to } \pm 16 \mathrm{VDC} \\ \\ \pm 20 \mathrm{~mA} \\ \pm 26 \mathrm{~mA} \end{gathered}$ |  |

NOTE: (1) Log conformity at $25^{\circ} \mathrm{C}$.

## PIN CONFIGURATION



PACKAGE INFORMATION

| MODEL | PACKAGE | PACKAGE DRAWING <br> NUMBER $^{(1)}$ |
| :--- | :---: | :---: |
| 4127 KG | $24-\mathrm{Pin}$ | 075 |
| 4127JG | $24-\mathrm{Pin}$ | 075 |

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

## TYPICAL PERFORMANCE CURVES



LOG RELATIONSHIP OF $\frac{\left|I_{S}\right|}{I_{R}}$ AND OUTPUT
VOLTAGE IN TERMS OF "A"


## DISCUSSION OF SPECIFICATIONS

## ACCURACY

The deviation from the ideal output voltage defined as a percent of the full scale output voltage.

## INPUT/OUTPUT RANGE

The $\log$ relationships of $-A \log \frac{I_{S}}{I_{R}}$ and $-A \log \frac{E_{S}}{I_{R} R}$ are subject to the constraints specified. The 4127 can be operated with inputs lower than those given, but the accuracy will be degraded.

## FREQUENCY RESPONSE

The small-signal frequency response varies considerably with signal level and scaling, so the frequency response is specified under several different operating conditions.


RELATIONSHIP OF $\frac{\left|I_{\mathrm{s}}\right|}{I_{\mathrm{R}}}$ AND OUTPUT VOLTAGE For $\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$ and $\mathrm{A}=5 \mathrm{~V}$ and 10 V
(10V

## STABILITY

The use of a monolithic transistor quad and low-drift amps minimizes drift, but some drift remains in the scale-factor, reference current, and input offset. Input offset consists of a bias current plus the op amp input voltage offset divided by the signal source resistance. Also, there is some slight drift in conformity to the $\log$ function and in output amplifier offset, but this is generally negligible.

## THEORY OF OPERATION

The 4127 is a complete logarithmic amplifier that can be pin-programmed to accept input currents or voltages of either polarity. By making use of the internal current inverter, reference current generator, $\log$ ratio element, and uncommitted op amp, you can generate a variety of logarith-
mic functions, including the $\log$ ratio of two signals, the logarithm of an input signal, or the antilog of an input signal. The unique FET-input current-inverting element removes the polarity limitations present in most conventional log amplifiers.
Utilizing the inherent exponential characteristics of transistor functions, the 4127 calculates accurate log functions for input currents from 1 nA to 1 mA , or input voltages from 1 mV to 10 V . Carefully matched monolithic quad transistors and temperature sensitive gain elements are used to produce a $\log$ amplifier with excellent temperature characteristics.
A functional diagram of the 4127 circuit is shown in Figure 1. In addition to the basic log amplifier, the 4127 contains a separate internal current source, a current inverter, and an uncommitted operational amplifier. The current inverter accurately converts negative input current to a positive current of equal magnitude.
The 4127 is capable of accurately logging input current over a 120 dB range, but to use this full range, good shielding practice must be followed. A current source input is, by definition, a high impedance source and is therefore subject to electrostatic pickup.
The input op amps, $\mathrm{A}_{1}$ and $\mathrm{A}_{3}$, have FET input stages for low noise and very-low input bias current. The op amp, $\mathrm{A}_{1}$, will make the collector current of $Q_{1}$ equal to the signal input current $I_{s}$, and the collector current of $Q_{2}$ will be the reference input current $I_{R}$.

From the semiconductor junction characteristics, the base-to-emitter voltage will be:

$$
\mathrm{V}_{\mathrm{BE}} \approx \frac{\mathrm{mKT}}{\mathrm{q}} \ln \frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{L}}},
$$

where: $\mathrm{I}_{\mathrm{C}}=$ Collector current
$\mathrm{I}_{\mathrm{L}}=$ Reverse saturation current
$\mathrm{q}, \mathrm{m}, \mathrm{K}=$ Constants
$\mathrm{T}=$ Absolute temperature
So $E_{1}=-\frac{\mathrm{mKT}_{1}}{\mathrm{q}} \ell \mathrm{n} \frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{L} 1}}$ and $\mathrm{E}_{2}-\mathrm{E}_{1}=\frac{\mathrm{mKT}_{2}}{\mathrm{q}} \ell \mathrm{n} \frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{L} 2}}$
If the transistors $Q_{1}$ and $Q_{2}$ are at the same temperature and have matched characteristics, then:

$$
\begin{aligned}
& \mathrm{E}_{2}=\frac{\mathrm{mKT}}{\mathrm{q}}\left(\ell \mathrm{n} \frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{L}}}-\ell \mathrm{n} \frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{L}}}\right) \\
& \mathrm{E}_{2}=\frac{-\mathrm{mKT}}{\mathrm{q}} \ln \frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{R}}}
\end{aligned}
$$

The output op amp, $A_{2}$, provides a voltage gain of approximately $\left(R_{T}+R_{2}\right) / R_{T}$, and the value of $(m K T) / q$ is about 26 mV at room temperature. Since resistor $R_{T}$ varies with temperature to compensate for gain drift, the output voltage, $\mathrm{E}_{\mathrm{O}}$, expressed as a log will be:


FIGURE 1. Functional Diagram.

$$
\begin{gathered}
E_{O}=-A \log _{10} \frac{I_{S}}{I_{R}}, \\
\text { where } A \approx \frac{R_{T}+R_{2}}{R_{T}}(26 \mathrm{mV}) \frac{1}{0.434}, R_{T} \approx 520 \Omega
\end{gathered}
$$

The external resistor $R_{1}$ sets the reference current $I_{R}$ and resistor $R_{2}$ sets the scale-factor "A". $R_{1}$ and $R_{2}$ must be trimmed to the desired values, but the approximate relationships are shown in Typical Performance Curves.
The relationship between the input current, $\mathrm{I}_{\mathrm{s}}$, and the output voltage, $\mathrm{E}_{\mathrm{O}}$, in terms of the externally adjusted parameters, $I_{R}$ and " $A$ ", is illustrated in Typical Performance Curves. This relationship is, of course, restricted to values of $I_{S}$ between 1 nA and 1 mA and output voltages of less than $\pm 10 \mathrm{~V}$.

## CHOOSING THE OPTIMUM SCALE FACTOR AND REFERENCE CURRENT

To minimize the effects of output offset and noise, it is usually best to use the full $\pm 10 \mathrm{~V}$ output range. Once an output range of $\pm 10 \mathrm{~V}$ has been chosen, then " $A$ " and $I_{R}$ can be determined from the Min/Max of the input current, $\mathrm{I}_{\mathrm{s}}$.

$$
\mathrm{E}_{\mathrm{O}}=-\mathrm{A} \log \frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{R}}}, \text { where } \mathrm{I}_{\mathrm{MIN}}<\mathrm{I}_{\mathrm{S}}<\mathrm{I}_{\mathrm{MAX}}
$$

The output range of $\pm 10 \mathrm{~V}$ for an input range of $\mathrm{I}_{\text {MIN }}$ to $\mathrm{I}_{\text {MAX }}$ means that:

$$
+10=-\mathrm{A} \log \frac{\mathrm{I}_{\mathrm{MIN}}}{\mathrm{I}_{\mathrm{R}}} \text { and }-10=-\mathrm{A} \log \frac{\mathrm{I}_{\mathrm{MAX}}}{\mathrm{I}_{\mathrm{R}}}
$$

Adding these two equations together

$$
\log \frac{\mathrm{I}_{\mathrm{MAX}}+\mathrm{I}_{\mathrm{MIN}}}{\mathrm{I}_{\mathrm{R}}{ }^{2}}=0, \text { or } \mathrm{I}_{\mathrm{R}}=\sqrt{\mathrm{I}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MIN}}}
$$

The value for A can be found from:

$$
10=\mathrm{A} \log \frac{\mathrm{I}_{\mathrm{MAX}}}{\sqrt{\mathrm{I}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MIN}}}}
$$

In terms of the input current range for $I_{S}$, the values for $I_{R}$ and A that will provide a full $\pm 10 \mathrm{~V}$ output swing are:

$$
\mathrm{I}_{\mathrm{R}}=\sqrt{\mathrm{I}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MIN}}} \text { and } \mathrm{A}=\frac{10}{\log \frac{\mathrm{I}_{\mathrm{MAX}}}{\mathrm{I}_{\mathrm{R}}}}
$$

## EXAMPLE

Assume that $\mathrm{I}_{\text {MIV }}$ is +10 nA and $\mathrm{I}_{\text {MAX }}$ is $+100 \mu \mathrm{~A}$.
This is an 80 dB range.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{R}}=\sqrt{\mathrm{I}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MIN}}}= \\
\sqrt{\left(10^{-4}\right)\left(10^{-8}\right)}=10^{-6}, \text { or } 1 \mu \mathrm{~A} .
\end{gathered}
$$

$$
\begin{aligned}
\frac{\mathrm{I}_{\mathrm{MAX}}}{\mathrm{I}_{\mathrm{R}}} & =\frac{10^{-4}}{10^{-6}}=100 \\
\log \frac{\mathrm{I}_{\mathrm{MAX}}}{\mathrm{I}_{\mathrm{R}}} & =2 ; \text { So, } \mathrm{A}=5
\end{aligned}
$$

For an $I_{R}$ of $1 \mu \mathrm{~A}$ and A of 5 ,

$$
E_{O}=-5 \log \frac{I_{S}}{1 \mu \mathrm{~A}}
$$

## CONNECTION DIAGRAMS

 Transfer function is $E_{O}=-A \log \frac{I_{1}}{I_{R}}$ where $I_{1}$ is a positive input current and $I_{R}$ is the resistor-programmed internal reference current (see Figure 2).

FIGURE 2. Transfer Function When $I_{1}$ is Positive.

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. Apply $\left|I_{1}\right|=I_{R}$, adjust $R_{1}$ such that $E_{O}=0$.
3. Apply $\left|I_{1}\right|=I_{\text {MAX }}$, adjust $R_{2}$ for the proper output voltage.
4. Repeat steps 2 and 3 if necessary.
5. Ignore this step if $\left|\mathrm{I}_{\text {MIIN }}\right| \geq 10 \mathrm{nA}$. Otherwise, apply $\left|\mathrm{I}_{1}\right|=$ 1 nA , make $\mathrm{R}_{3}=1 \mathrm{kM} \Omega$ and adjust $\mathrm{R}_{4}$ for the proper output voltage. For $R_{3}$, a single resistor is recommended. A voltage divider network is difficult to use due to amplifier offset voltage.

Transfer function is $E_{O}=-A \log \frac{\left|I_{1}\right|}{I_{R}}$ where $I_{1}$ is a negative input current and $I_{R}$ is the resistor-programmed internal reference current (see Figure 3).


FIGURE 3. Transfer Function When $I_{1}$ is Negative.

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. Apply $\left|I_{1}\right|=I_{R}$ adjust $R_{1}$ such that $E_{O}=0$.
3. Apply $\left|I_{1}\right|=I_{\text {MAX }}$, adjust $R_{2}$ for the proper output voltage
4. Repeat steps 2 and 3 if necessary.
5. Ignore this step if $\left|\mathrm{I}_{\text {MIIN }}\right| \geq 10 \mathrm{nA}$. Otherwise, apply $\left|\mathrm{I}_{1}\right|=$ 1 nA , make $\mathrm{R}_{3}=1 \mathrm{kM} \Omega$ and adjust $\mathrm{R}_{4}$ for the proper output voltage. For $R_{3}$, a single resistor is recommended. A voltage divider network is difficult to use due to amplifier offset voltage.

Transfer function is $E_{O}=-A \log \frac{E_{1}}{R_{4} I_{R}}$, where $E_{1}$ is a positive input voltage and $I_{R}$ is the resistor-programmed internal reference current (see Figure 4).


FIGURE 4. Transfer Function When $\mathrm{E}_{1}$ is Positive.

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. Apply $E_{1}=I_{R}(10 k \Omega)$, adjust $R_{1}$ such that $E_{O}=0$.
3. Apply $\mathrm{E}_{1}=\mathrm{E}_{\mathrm{MAX}}$, adjust $\mathrm{R}_{2}$ for the proper output voltage.
4. Apply $\mathrm{E}_{1}=\mathrm{E}_{\text {MIN }}$, adjust $\mathrm{R}_{3}$ for the proper output.
5. Repeat steps 2 through 4 if necessary.

Transfer function is $E_{O}=-A \log \frac{\left|E_{1}\right|}{R_{4} I_{R}}$, where $E_{1}$ is a negative input voltage and $I_{R}$ is the resistor-programmed internal reference current (see Figure 5).


FIGURE 5. Transfer Function When $\mathrm{E}_{1}$ is Negative.

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. Apply $\left|E_{1}\right|=I_{R}(10 \mathrm{k} \Omega)$, adjust $R_{1}$ such that $E_{O}=0$.
3. Apply $\left|\mathrm{E}_{1}\right|=\mathrm{E}_{\mathrm{MAX}}$, adjust $\mathrm{R}_{2}$ for the proper output voltage.
4. Apply $\left|\mathrm{E}_{1}\right|=\mathrm{E}_{\text {MIN }}$, adjust $\mathrm{R}_{3}$ for the proper output.
5. Repeat steps 2 through 4 if necessary.

Transfer function is $E_{O}=-A \log \frac{\left|I_{1}\right|}{\left|I_{2}\right|}$ with $I_{1}$ and $I_{2}$ negative; $\left|I_{1}\right| \geq 1 \mathrm{nA},\left|\mathrm{I}_{2}\right| \geq 1 \mu \mathrm{~A}$ (see Figure 6).


FIGURE 6. Transfer Function When $I_{1}$ and $I_{2}$ are Negative.

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. No further adjustment is necessary if $\mathrm{I}_{1}$ min $\geq 10 \mathrm{nA}$, otherwise connect the $\mathrm{R}_{3}$ and $\mathrm{R}_{4}$ network, with $\mathrm{R}_{4}=10 \mathrm{k} \Omega$ and $R_{3}=10^{9} \Omega$. Adjust $R_{4}$ for proper output voltage after adjusting gain errors. Since the voltage at pin 4 is in the range of $\pm 5 \mathrm{mV}$, it is not practical to use a T-network to replace $\mathrm{R}_{3}$.

Transfer function is $\mathrm{E}_{\mathrm{O}}=-\mathrm{A} \log \frac{\left|\mathrm{I}_{1}\right|}{\mathrm{I}_{2}}$ with $\mathrm{I}_{1}$ negative, $\mathrm{I}_{2}$ positive; $\left|\mathrm{I}_{1}\right| \geq 1 \mathrm{nA}, \mathrm{I}_{2} \geq 1 \mu \mathrm{~A}$ (see Figure 7).


FIGURE 7. Transfer Function When $I_{1}$ is Negative, $I_{2}$ is Positive.

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. No further adjustment is necessary if $\left|\mathrm{I}_{1}\right|_{\text {Min }} \geq 10 \mathrm{nA}$, otherwise connect the $R_{3}$ and $R_{4}$ network, with $R_{4}=10 \mathrm{k} \Omega$ and $R_{3}=10^{9} \Omega$. Adjust $R_{4}$ for proper output voltage after adjusting gain errors. Since the voltage at pin 4 is in the range of $\pm 5 \mathrm{mV}$, it is not practical to use a T-network to replace $\mathrm{R}_{3}$.

Transfer function is $E_{O}=-A \log \frac{I_{1}}{I_{2}}$ with $I_{1}$ and $I_{2}$ positive; $I_{1} \geq 1 \mathrm{nA}, \mathrm{I}_{2} \geq 1 \mu \mathrm{~A}$ (see Figure 8 ).

## ADJUSTMENT PROCEDURE

1. Refer to Choosing the Optimum Scale Factor and Reference Current.
2. No further adjustment is necessary if $\mathrm{I}_{1}$ min $\geq 10 \mathrm{nA}$, otherwise connect the $R_{3}$ and $R_{4}$ network, with $R_{4}=10 \mathrm{k} \Omega$ and $R_{3}=10^{9} \Omega$. Adjust $R_{4}$ for proper output voltage after adjusting gain errors. Since the voltage at pin 4 is in the
range of $\pm 5 \mathrm{mV}$, it is not practical to use a T-network to replace $\mathrm{R}_{3}$.


FIGURE 8. Transfer Function When $I_{1}$ and $I_{2}$ is Positive.

## ANTILOG OPERATION

The 4127 can also perform the antilog function. The output is connected through a resistor, $\mathrm{R}_{\mathrm{O}}$, into the current input, pin 4. The input signal is connected through a gain resistor to pin 19 as shown in Figure 9.


FIGURE 9. Antilog Operation.

These connections form an implicit loop for computing the antilog function. From the block diagram of Figure 1, the voltage at the inverting input of the output amplifier $\mathrm{A}_{2}$ must equal $E_{2}$, so

$$
\mathrm{E}_{2} \approx \frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{2}} \mathrm{E}_{\mathrm{S}}, \mathrm{R}_{\mathrm{T}} \approx 520 \Omega
$$

Since the output is connected through $\mathrm{R}_{0}$ to pin 4 , the current $I_{S}$ will equal $E_{0} / R_{O}$ and $E_{2}$ will be

$$
\mathrm{E}_{2}=-\frac{\mathrm{mKT}}{\mathrm{q}} \ell \mathrm{n} \frac{\mathrm{E}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{o}} \mathrm{I}_{\mathrm{R}}}
$$

Combining expressions for $\mathrm{E}_{2}$ gives the relationship:

$$
\begin{aligned}
\frac{R_{T}}{R_{T}+R_{2}} E_{S} & =-\frac{m K T}{q} \ell n \frac{E_{O}}{R_{0} I_{R}} \\
& -\frac{E_{S}}{A}=\log \frac{E_{O}}{R_{0} I_{R}}
\end{aligned}
$$

where:

$$
\begin{aligned}
& A \approx \frac{R_{T}+R_{2}}{R_{T}}(26 \mathrm{mV}) \frac{1}{0.434} \\
& E_{O}=R_{O} I_{R} \text { Antilog }-\frac{E_{S}}{A}
\end{aligned}
$$

Setting $R_{O}$ and $I_{R}$ will set the scale factor. For example, an $R_{O}$ of $1 \mathrm{M} \Omega$ and $I_{R}$ of $1 \mu \mathrm{~A}$ will give a scale factor of unity and $E_{O}=$ Antilog $-\frac{E_{S}}{A}$

## PACKAGING INFORMATION

| ORDERABLE DEVICE | STATUS(1) | PACKAGE TYPE | PACKAGE DRAWING | PINS | PACKAGE QTY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4127 JG | NRND | CDIP | JNA | 24 | 15 |
| 4127 KG | NRND | CDIP | JNA | 24 | 15 |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products

| Amplifiers | amplifier.ti.com | Audio |
| :--- | :--- | :--- |
| Data Converters | dataconverter.ti.com | Automotive |
| DSP | dsp.ti.com | Broadband |
| Interface | interface.ti.com | Digital Control |
| Logic | logic.ti.com | Military |
| Power Mgmt | power.ti.com | Optical Networking |
| Microcontrollers | microcontroller.ti.com | Security |
|  |  | Telephony |
|  |  | Video \& Imaging |
|  |  | Wireless |

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments<br>Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

