

GLF73510 Nano-Current Consumed, IoSmart™ Battery Protection Switch

Product Specification

DESCRIPTION

The GLF73510 is an I_QSmart^{TM} ultra-efficiency, 2 A rated switch with the accurate turn-off threshold to prevent a battery from being discharged deeply.

When the voltage of a battery decreases to the off threshold voltage level, the GLF73510 is turned off, consuming an ultra-low leakage current (I_{SD}) to save the battery. The GLF73510 remains in the off state until a higher voltage is applied to V_{OUT} pin. Note that the GLF73510 is enabled only by V_{OUT} voltage with a charger output.

With the higher V_{OUT} voltage from a charger applied, the GLF73510 is fully turned on and monitors V_{BAT} voltage. When the V_{OUT} voltage of a charger is less than the on threshold voltage, a battery can be charged through the body diode of the main switch.

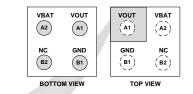
In case that a charged battery is assembled without a higher V_{OUT} applied, the GLF73510 continues to stay at the sleep mode, consuming an ultra-low leakage current (I_{SD}) to save the battery, during shipping or storage.

The GLF73510 is available in 0.97 mm x 0.97 mm x 0.55 mm wafer level chip scale package (WLCSP).

FEATURES

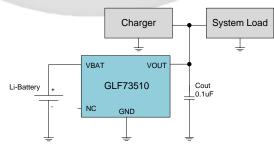
Off Threshold Voltage to Protect Battery
 Discharge

 V_{TH_OFF} : V_{BAT} =3.05 V


Contact GLF for a different VTH level

- Switch is activated only by the V_{OUT} voltage of a charger output
- Ultra-Low Iq: 500 nA Typ @ VBAT=3.6 V
 - Ultra-Low I_{SD}: 2 nA Typ @ V_{BAT} =1.1 V 6 nA Typ @ V_{BAT} =3.6 V
- Low R_{ON}: 30 mΩ Typ @ V_{BAT}=3.6 V
 28 mΩ Typ @ V_{BAT}=4.2 V
- IOUT Max : 2 A
- Temperature Range: -40 to 85 °C
- HBM: 6kV, CDM: 2 kV
- Ultra-Small : 0.97 mm x 0.97 mm WLCSP

APPLICATIONS


- Battery protection
- Wearables / IoT Devices
- Mobile Devices
- Mobile Medical

PACKAGE

0.97 mm x 0.9 7mm x 0.55 mm WLCSP

APPLICATION DIAGRAM

Note: 1) The GLF73510 can be activated by applying a voltage above V_{ON} to the V_{OUT} pin.

2) When the GLF73510 is at the off state, the battery can be charged through the body diode of the main switch.

DEVICE INFORMATION

Part Number	Top Mark	Ron Threshol (Typ) VBAT=3.6V VTH_OFF					
GLF73510	UA	30 mΩ	3.05 V				

FUNCTIONAL BLOCK DIAGRAM

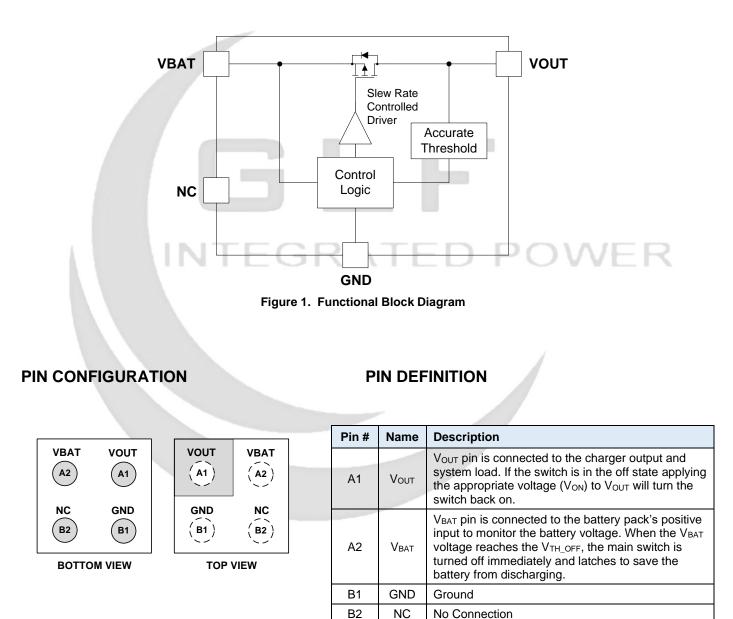


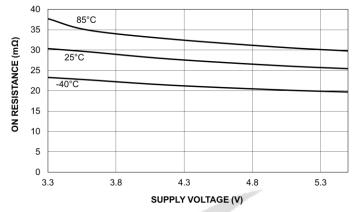
Figure 2. 0.97 mm x 0.97 mm x 0.55 mm WLCSP

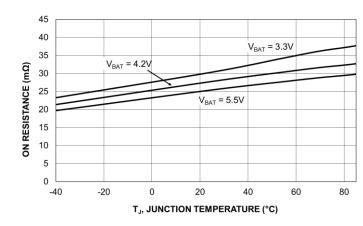
GLF INTEGRATED POWER Nano-Current Consumed, IQSmart[™] Battery Protection Switch

ABSOLUTE MAXIMUM RATINGS

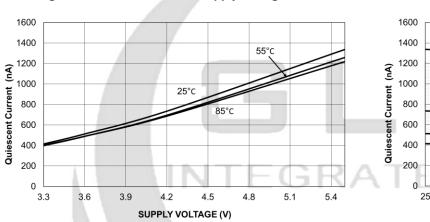
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

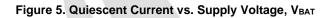
Symbol	Par	Min.	Max.	Unit		
Vbat, Vout	Each Pin Voltage to GND	Each Pin Voltage to GND				
I _{OUT}	Maximum Continuous Switch Current	Maximum Continuous Switch Current				
PD	Power Dissipation at T _A = 25°C		1.2	W		
Tstg	Storage Junction Temperature	-65	150	°C		
TA	Operating Temperature Range	-40	85	°C		
θја	Thermal Resistance, Junction to Ambie		85	°C/W		
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	6		kV	
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		κv	


ELECTRICAL CHRACTERISTICS


Values are at $T_A = 25$ °C unless otherwise noted.


Symbol	Parameter	Condition	S	Min.	Тур.	Max.	Unit
Vbat, Vout	Operating Voltage			1.1		5.5	V
V	OFF Threshold Voltage	VBAT decreases until switch turns OFF			3.05	3.20	v
Vth_off	OFF Theshold Vollage	V _{BAT} decreases until switch tur		2.9		V	
Von	ON Voltage applied to	Vout increases until switch turr	IS ON, VBAT =3.6 V ⁽²⁾		3.5		v
VON	Vout	V_{OUT} increasing, V_{BAT} =3.6 V,	\sum	3.4		V	
		VBAT = 3.6 V, IOUT=0 mA, Switc	n = ON		0.51		
lq	Quiescent Current with	VBAT = 4.2 V, IOUT=0 mA, Switc			0.73	1	uA
iQ	Switch On	V_{BAT} = 4.2 V, I _{OUT} =0 mA, Switc			0.70		
		V_{BAT} = 4.2 V, I_{\text{OUT}}=0 mA, Switch = ON, Ta=85 °C $^{(1)}$			0.69		
		VBAT = 1.1 V, VOUT = 0 V		1	2		
		V _{BAT} = 2.5 V, V _{OUT} = 0 V			3		nA
	Shutdown Current	V _{BAT} = 3.3 V, V _{OUT} = 0 V			5		
Isd		V _{BAT} = 3.6 V, V _{OUT} = 0 V			6		
		$V_{BAT} = 4.2 \text{ V}, V_{OUT} = 0 \text{ V}$			9	50	
		V _{BAT} = 4.2 V, V _{OUT} = 0 V, Ta=5		0.06		uA	
		$V_{BAT} = 4.2 V, V_{OUT} = 0 V, Ta=8$	5 °C ⁽¹⁾		0.55		0/1
			Ta=25 °C		28	32	
	On-Resistance	VBAT=4.2 V, IOUT= 500 mA	Ta=55 °C (1)		30		mΩ
			Ta=85 °C (1)		33		
Ron			Ta=25 °C		30	34	
		V _{BAT} =3.6 V, I _{OUT} = 500 mA	Ta=55 °C ⁽¹⁾		32		
			Ta=85 °C ⁽¹⁾		35		
		V _{BAT} =3.3 V, I _{OUT} = 500 mA	Ta=25 °C		31	35	1
VF	Forward Voltage of Diode ⁽¹⁾	IF= 5 mA			0.4		V
toff	Turn-Off Time (1)	Cout=0.1 μF, Rout=150 Ω, Vou	IT = VTH_OFF to 0 V		36		us


Notes: 1. By design; characterized, not production tested. 2. See Figure 10 for details.


TYPICAL PERFORMANCE CHARACTERISTICS

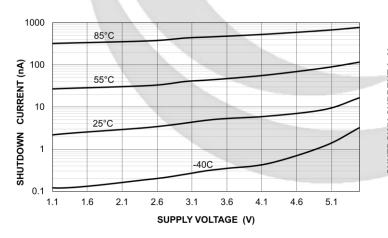


Figure 4. On-Resistance vs. Temperature

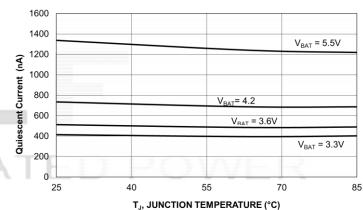


Figure 6. Quiescent Current vs. Temperature

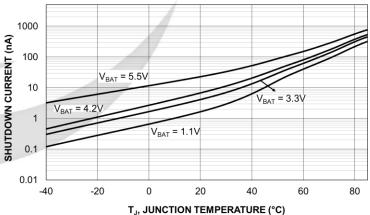
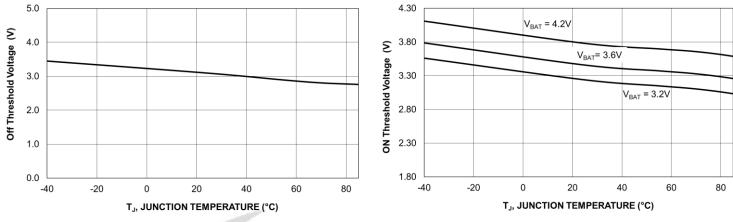
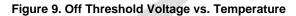




Figure 8. Shutdown Current vs. Temperature

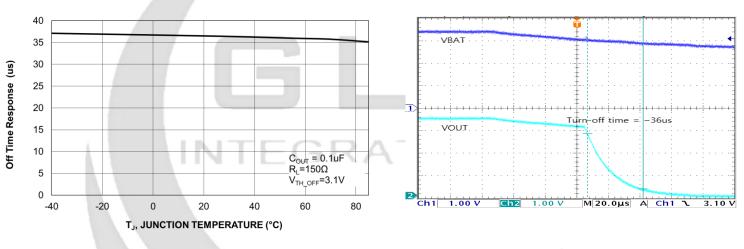
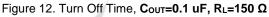



Figure 11. Off Time Response

GLF INTEGRATED POWER Nano-Current Consumed, IoSmart[™] Battery Protection Switch

APPLICATION INFORMATION

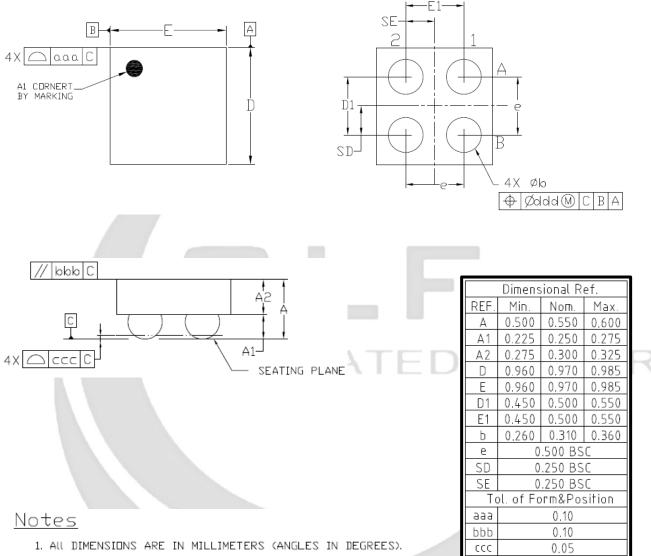
The GLF73510 is an ultra-efficiency, 2 A rated, load switch with accurate ON/OFF threshold voltage and integrated slew rate control. The best in class efficiency makes it an ideal chose for use in wearables, IoT devices, and mobile electronics.

ON / OFF Threshold

When the voltage of a battery decreases to the off threshold voltage level, the GLF73510 is turned off, consuming an ultra-low leakage current to save the battery. The GLF73510 remains in the off state until a higher voltage is applied to the V_{OUT} pin. Note that the GLF73510 is enabled only by the V_{OUT} pin with a higher voltage than the on threshold voltage. With the higher V_{OUT} voltage from a charger applied, the GLF73510 is fully turned on and monitors the V_{BAT} voltage. When the V_{OUT} voltage of a charger is less than the on threshold voltage, a battery can be charged through the body diode of the main switch.

Output Capacitor

An output capacitor is not required for GLF73510 operation. However, a 0.1 uF capacitor is recommended to be placed close to the V_{OUT} pin to mitigate an undershoot voltage or the transient voltage peak caused by a hot-plugging voltage source.

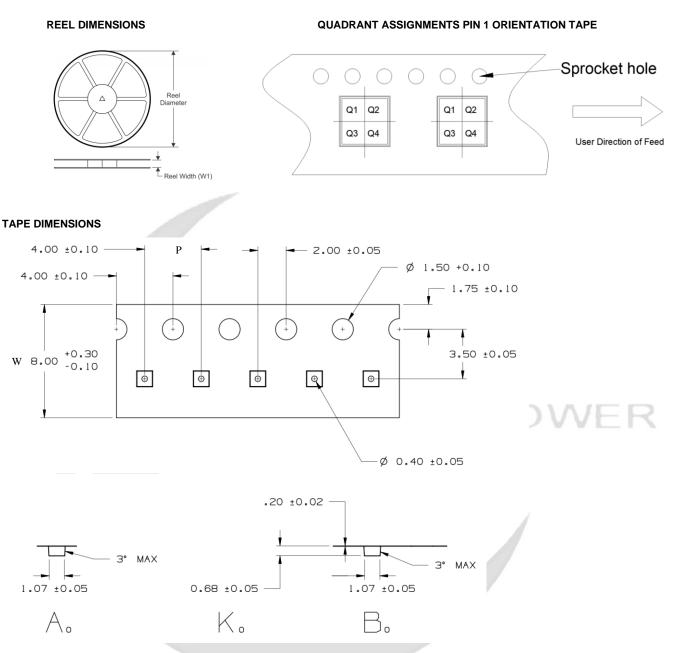

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for V_{BAT}, V_{OUT}, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.

IEGRATED POW

GLF INTEGRATED POWER Nano-Current Consumed, IQSmart[™] Battery Protection Switch

PACKAGE OUTLINE


2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

ddd

0.05

GLF73510 INTEGRATED POWER Nano-Current Consumed, IoSmart[™] Battery Protection Switch

TAPE AND REEL INFORMATION

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	KO	Ρ	w	Pin1
GLF73510	WLCSP	4	3000	180	9	1.07	1.07	0.68	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

GLF73510

INTEGRATED POWER Nano-Current Consumed, IoSmartTM Battery Protection Switch

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	pecification limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question. Preliminary This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or potification.	
Preliminary Specification		
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.