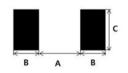


Metal Composite Power Inductor (wire wound) Specification Sheet

CIGW160808XMR47MLC (1608 / EIA 0603)

APPLICATION


Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FFATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

RECOMMENDED LAND PATTERN

	Unit : mm
TYPE	1608
Α	0.8
В	0.5
С	0.9

DIMENSION

D	
Bottom	View]

TYPE	Dimension [mm]							
IIFL	L	W	T	D				
1608	1.6±0.2	0.8±0.2	0.7±0.1	0.35±0.15				

DESCRIPTION

	Part no.	Size	Thickness	Inductance Inductance tolerance	DC Resistance [mΩ]		Rated DC Current * 1 [A]		Rated DC Current * 2 [A]		
		[inch/mm] [mm] (max)	[uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
	CIGW160808XMR47MLC	0603/1608	0.8	0.47	±20	43	37	2.7	3	3	3.3

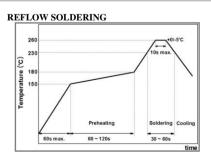
- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current : Value defined when DC current flows and the nominal value of inductance has decreased by 30% or

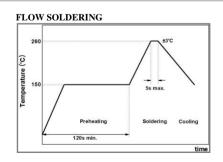
when current flows and temperature has risen to 40 ℃ whichever is smaller. (Reference: ambient temperature is 25 ℃±10)

(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of

the nominal inductance value at 30% (Reference: ambient temperature is 25 °C±10)

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40 ℃ by DC current. (Reference: ambient temperature is 25 ℃±10)


- * Absolute maximum voltage : Rated Voltage 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)


PRODUCT IDENTIFICATION

<u>CIG</u>	<u>W</u>	<u> 1608</u>	<u>08</u>	<u> </u>	<u>R47</u>	<u>M</u>	<u>L</u>	<u>C</u>
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

- (1) Power Inductor
- (3) Dimension (1608: 1.6mm \times 0.8mm)
- (5) Remark (Characterization Code)
- (7) Toleranc∈ (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (T: Metal Composite Thin Film Type)
- (4) Thickness (08: 0.8mm)
- (6) Inductance (R47: 0.47 uH)

RECOMMENDED SOLDERING CONDITION

PACKAGING

Packaging Style	Quantity(pcs/reel)
Card Board Taping	4000 pcs

Item	Specified Value	Т	Test Condition		
Solderability	More than 90% of terminal electrode should be soldered newly.	After being dipped in flux for 4±1 seconds, and preheated at $150 \sim 180^{\circ}\!$			
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.	After being dipped in flux for 4±1 seconds, and preheated at $150\!\sim\!180^{\circ}\!$			
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under the following conditions. -40±3 °C for 30 min → 85±3 °C for 30 min			
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500± Measure the test items aft humidity for 24 hours.	±12 hours. ter leaving at normal temperature and		
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCE at -55±2°C for 500±12 hou Measure the test items aft humidity for 24hours.			
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	hours.	B. Exposure at 125±2°C for 500±12 ter leaving at normal temperature and		
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5℃, 3 times			
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours).			
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at the limit point in 5 sec. PCB thickness: 1.6mm			
Bending Test	10	20 R340	Unit :mm 2 —		
	 	→			
	No indication of peeling shall occur on the terminal electrode.	W(kgf) 0.5	TIME(sec) 10±1		
Terminal Adhesion Test					
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test on 1 meter, 10 drops	concrete plate.		

Metal Composite Power Inductor (wire wound)

Data Sheet

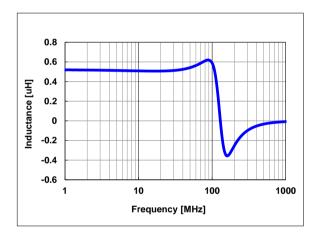
1. Model: CIGW160808XMR47MLC

2. Description

Part no	Size Thickness Induc	Inductance	Inductance tolerance (%)	DC Resistance [mΩ]		Rated DC Current * 1 [A]		Rated DC Current * 2 [A]		
	[mm] (max)	[uH]		Max.	Тур.	Max.	Тур.	Max.	Тур.	
CIGW160808XMR47MLC	0603/1608	0.8	0.47	±20	43	37	2.7	3	3	3.3

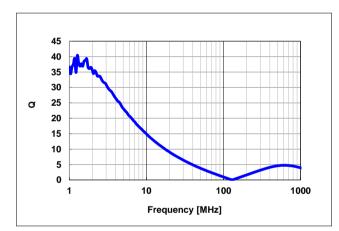
^{*} Inductance: Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of the nominal inductance value at 30% (Reference: ambient temperature is 25°C±10)

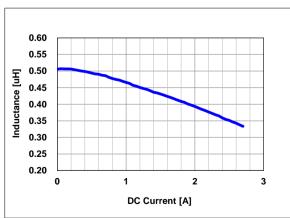

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40°C by DC current. (Reference: ambient temperature is 25°C±10)

* Absolute maximum voltage: Rated Voltage 20V.

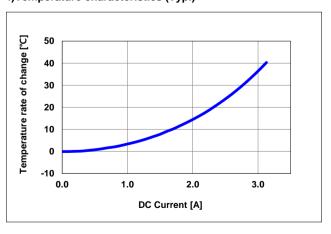
3. Characteristics data


1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz



2) Frequency characteristics (Q)


Agilent E4294A +E4991A, 1MHz to 1,000MHz

3) DC Bias characteristics (Typ.)

4)Temperature characteristics (Typ.)

^{*} DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent

^{*} Maximum allowable DC current: Value defined when DC current flows and the nominal value of inductance has decreased by 30% or when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

^{*} Operating temperature range : -40 to +125°C (Including self-temperature rise)